login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332787
Negative-pan primes (see Comments).
3
2, 3, 7, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 227, 229, 233, 239, 241, 251, 257, 263, 277, 281, 283, 293, 307, 311, 317, 331, 337, 347, 349, 353, 359, 367
OFFSET
1,1
COMMENTS
Take a double-pan balance scale and name the pans "negative" and "positive". At each step, the question is: "Is there an unused prime that would balance the scale if added to the positive pan?" If the answer is yes, add that prime to the positive pan. Otherwise, add the smallest unused prime to the negative pan.
The negative pan N can be fractalized, i.e., subdivided into NN and NP pans, where NN ={{2,3,7,11},{13,17,19,29,37,41,43},...} and NP = {{23},{199},...}. Can this fractalization be continued infinitely?
LINKS
EXAMPLE
First division: 2 and 3 unbalance the scale (and go to the negative pan N), but 5 = 2 + 3 balances it (and goes to the positive pan P).
Second division: 2,3,7 and 11 unbalance the N pan (and go to the NN subpan), but 23 balances it (and goes to NP subpan).
MATHEMATICA
a[1]=-2;
a[n_]:=a[n]=Module[{tab=Table[a[i], {i, 1, n-1}],
totalN=Abs[Total[Select[Table[a[i], {i, 1, n-1}], Negative]]],
totalP=Total[Select[Table[a[i], {i, 1, n-1}], Positive]],
l=NextPrime[Last[Select[Table[a[i], {i, 1, n-1}], Negative]], -1]},
If[ totalN==totalP,
If[ PrimePi[tab[[-1]]]-PrimePi[Abs[tab[[-2]]]]==1, -NextPrime[tab[[-1]]],
NextPrime[tab[[-2]], -1]],
If[PrimeQ[totalN-totalP]&&FreeQ[Abs[tab], totalN-totalP], totalN-totalP,
If[FreeQ[Abs[tab], Abs[l]], l, While[!FreeQ[Abs[tab], Abs[l]], l=NextPrime[l, -1]]; l]
]]]; Abs[Select[a/@Range[78], Negative]]
PROG
(Python)
from itertools import islice
from sympy import isprime, nextprime
def agen(): # generator of terms
used, d, nextp = set(), 0, 2
while True:
if d > 0 and d not in used and isprime(d):
used.add(d); d = 0
while nextp in used:
nextp = nextprime(nextp)
used.add(nextp); yield nextp; d += nextp
print(list(islice(agen(), 65))) # Michael S. Branicky, May 12 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ivan N. Ianakiev, Feb 24 2020
STATUS
approved