login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332785
Nonsquarefree numbers that are not squareful.
17
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 204, 207, 208, 212, 220, 224
OFFSET
1,1
COMMENTS
Sometimes nonsquarefree numbers are misnamed squareful numbers (see 1st comment of A013929). Indeed, every squareful number > 1 is nonsquarefree, but the converse is false. This sequence = A013929 \ A001694 and consists of these counterexamples.
This sequence is not a duplicate: the first 16 terms (<= 68) are the same first 16 terms of A059404, A323055, A242416 and A303946, then 72 is the 17th term of these 4 sequences. Also, the first 37 terms (<= 140) are the same first 37 terms of A317616 then 144 is the 38th term of this last sequence.
From Amiram Eldar, Sep 17 2023: (Start)
Called "hybrid numbers" by Jakimczuk (2019).
These numbers have a unique representation as a product of two numbers > 1, one is squarefree (A005117) and the other is powerful (A001694).
Equivalently, numbers k such that A055231(k) > 1 and A057521(k) > 1.
Equivalently, numbers that have in their prime factorization at least one exponent that is equal to 1 and at least one exponent that is larger than 1.
The asymptotic density of this sequence is 1 - 1/zeta(2) (A229099). (End)
FORMULA
This sequence is A126706 \ A286708.
Sum_{n>=1} 1/a(n)^s = 1 + zeta(s) - zeta(s)/zeta(2*s) - zeta(2*s)*zeta(3*s)/zeta(6*s), s > 1. - Amiram Eldar, Sep 17 2023
EXAMPLE
18 = 2 * 3^2 is nonsquarefree as it is divisible by the square 3^2, but it is not squareful because 2 divides 18 but 2^2 does not divide 18, hence 18 is a term.
72 = 2^3 * 3^2 is nonsquarefree as it is divisible by the square 3^2, but it is also squareful because primes 2 and 3 divide 72, and 2^2 and 3^2 divide also 72, so 72 is not a term.
MAPLE
filter:= proc(n) local F;
F:= ifactors(n)[2][.., 2];
max(F) > 1 and min(F) = 1
end proc:
select(filter, [$1..1000]); # Robert Israel, Sep 15 2024
MATHEMATICA
Select[Range[225], Max[(e = FactorInteger[#][[;; , 2]])] > 1 && Min[e] == 1 &] (* Amiram Eldar, Feb 24 2020 *)
PROG
(PARI) isok(m) = !issquarefree(m) && !ispowerful(m); \\ Michel Marcus, Feb 24 2020
(Python)
from math import isqrt
from sympy import mobius, integer_nthroot
def A332785(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c, l, j = n-1+squarefreepi(integer_nthroot(x, 3)[0])+squarefreepi(x), 0, isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2, 3)[0]+1
w = squarefreepi(k2-1)
c += j*(w-l)
l, j = w, isqrt(x//k2**3)
return c-l
return bisection(f, n, n) # Chai Wah Wu, Sep 14 2024
CROSSREFS
Cf. A005117 (squarefree), A013929 (nonsquarefree), A001694 (squareful), A052485 (not squareful).
Cf. A059404, A126706, A229099, A242416, A286708, A303946, A317616, A323055 (first terms are the same).
Sequence in context: A360248 A317616 A375934 * A367589 A177425 A182854
KEYWORD
nonn,easy
AUTHOR
Bernard Schott, Feb 24 2020
STATUS
approved