login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052485
Weak numbers (i.e., not powerful (1)): there is a prime p where p|n is true but p^2|n is not true.
31
2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84
OFFSET
1,1
LINKS
FORMULA
A112526(a(n)) = 0. - Reinhard Zumkeller, Sep 16 2011
a(n) ~ n. - Charles R Greathouse IV, Jul 19 2012
a(n) = n + O(sqrt(n)). - Charles R Greathouse IV, Jul 08 2022
Sum_{n>=1} 1/a(n)^s = zeta(s) - zeta(2*s)*zeta(3*s)/zeta(6*s), for s > 1. - Amiram Eldar, May 13 2023
MATHEMATICA
Select[Range[1000], Min[FactorInteger[#][[All, 2]]] <= 1 &] (* Geoffrey Critzer, Feb 11 2015 *)
PROG
(Haskell)
a052485 n = a052485_list !! (n-1)
a052485_list = filter ((== 0) . a112526) [1..]
-- Reinhard Zumkeller, Sep 16 2011
(PARI) is(n)=n>1 && vecmin(factor(n)[, 2])==1 \\ Charles R Greathouse IV, Mar 19 2014
(PARI) is(n)=!ispowerful(n) \\ Charles R Greathouse IV, Sep 18 2015
(Python)
from math import isqrt
from sympy import integer_nthroot, factorint
def A052485(n):
def f(x): return int(n+sum(isqrt(x//k**3) for k in range(1, integer_nthroot(x, 3)[0]+1) if all(d<=1 for d in factorint(k).values())))
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m # Chai Wah Wu, Sep 10 2024
CROSSREFS
Cf. A001694 (complement), A112526. Not the same as A007916.
Sequence in context: A085971 A175082 A007916 * A341646 A109421 A335433
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Mar 16 2000
STATUS
approved