

A052488


[n*H(n)] where H(n) is the nth harmonic number (i.e. sum (1/k), k= 1...n).


3



1, 3, 5, 8, 11, 14, 18, 21, 25, 29, 33, 37, 41, 45, 49, 54, 58, 62, 67, 71, 76, 81, 85, 90, 95, 100, 105, 109, 114, 119, 124, 129, 134, 140, 145, 150, 155, 160, 165, 171, 176, 181, 187, 192, 197, 203, 208, 214, 219, 224, 230, 235, 241, 247, 252, 258, 263, 269
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

[n*H(n)] gives a (very) rough approximation to the nth prime
a(n) is the integer part of the solution to the Coupon Collector's Problem. For example, if there are n=4 different prizes to collect from cereal boxes and they are equally likely to be found, then the integer part of the average number of boxes to buy before the collection is complete is a(4)=8.  Ron Lalonde (ronronronlalonde(AT)hotmail.com), Feb 04 2004


LINKS

Table of n, a(n) for n=1..58.


MAPLE

for n from 1 to 100 do printf(`%d, `, floor(n*sum(1/k, k=1..n))) od:


CROSSREFS

Cf. A006218.
Sequence in context: A094228 A001855 A006591 * A076372 A005356 A060432
Adjacent sequences: A052485 A052486 A052487 * A052489 A052490 A052491


KEYWORD

easy,nonn


AUTHOR

Tomas Mario Kalmar (TomKalmar(AT)aol.com), Mar 15 2000


EXTENSIONS

More terms from James A. Sellers, Mar 17 2000


STATUS

approved



