login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A332790
Triangle read by rows: T(n,k) = 1 + 2*n + k + 5*k(n-k) for n >= 0, 0 <= k <= n.
1
1, 3, 4, 5, 11, 7, 7, 18, 19, 10, 9, 25, 31, 27, 13, 11, 32, 43, 44, 35, 16, 13, 39, 55, 61, 57, 43, 19, 15, 46, 67, 78, 79, 70, 51, 22, 17, 53, 79, 95, 101, 97, 83, 59, 25, 19, 60, 91, 112, 123, 124, 115, 96, 67, 28, 21, 67, 103, 129, 145, 151, 147, 133, 109, 75, 31
OFFSET
0,2
LINKS
Philip K. Hotchkiss, Generalized Rascal Triangles, arXiv:1907.11159 [math.HO], 2019, Figure 8 p. 3.
FORMULA
T(n,k) = 1 + 2*n + k + 5*k*(n-k), n >= 0, 0 <= k <= n.
EXAMPLE
From Jon E. Schoenfield, Mar 14 2020: (Start)
.
n\k| 0 1 2 3 4 5 6 7 8 9 10
---+-----------------------------------------------------
0 | 1
1 | 3 4
2 | 5 11 7
3 | 7 18 19 10
4 | 9 25 31 27 13
5 | 11 32 43 44 35 16
6 | 13 39 55 61 57 43 19
7 | 15 46 67 78 79 70 51 22
8 | 17 53 79 95 101 97 83 59 25
9 | 19 60 91 112 123 124 115 96 67 28
10 | 21 67 103 129 145 151 147 133 109 75 31
...
(End)
MAPLE
:=proc(n, k)
if n<0 or k<0 or k>n then
0;
else
1+2*n+k+5*k*(n-k);
end if;
MATHEMATICA
T[n_, k_]:=1+2*n+k+5*k*(n-k); Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philip K Hotchkiss, Mar 04 2020
STATUS
approved