login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133320
Numbers k such that both A124296(k) = 5*F(k)^2 - 5*F(k) + 1 and A124297(k) = 5*F(k)^2 + 5*F(k) + 1 are prime, where F(k) = Fibonacci(k).
0
3, 4, 5, 10, 40
OFFSET
1,1
MATHEMATICA
Do[ F=Fibonacci[n]; f=5*F^2-5*F+1; g=5*F^2+5*F+1; If[ PrimeQ[f], If[ PrimeQ[g], Print[ {n, f, g} ] ] ], {n, 1, 1000} ]
CROSSREFS
Cf. A124297 (5*F(n)^2 + 5*F(n) + 1, where F(n) = Fibonacci(n)).
Cf. A124296 (5*F(n)^2 - 5*F(n) + 1, where F(n) = Fibonacci(n)).
Sequence in context: A136366 A123820 A261903 * A225906 A332790 A329524
KEYWORD
more,nonn
AUTHOR
Alexander Adamchuk, Oct 18 2007
STATUS
approved