login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133317
Dimensions of certain Lie algebra (see reference for precise definition).
2
1, 35, 405, 2695, 12740, 47628, 149940, 413820, 1029105, 2351635, 5010005, 10061415, 19211920, 35119280, 61799760, 105163632, 173707785, 279397755, 438775645, 674334815, 1016206884, 1504211500, 2190324500, 3141625500, 4443791625, 6205210011, 8561787885
OFFSET
0,2
COMMENTS
This is the case P(5,n) of the family of sequences defined in A132458. - Ottavio D'Antona (dantona(AT)dico.unimi.it), Oct 31 2007
LINKS
J. M. Landsberg and L. Manivel, The sextonions and E7 1/2, Adv. Math. 201 (2006), 143-179. [Th. 7.2(i), case a=2]
FORMULA
Empirical g.f.: (x+1)*(x^4+24*x^3+76*x^2+24*x+1) / (x-1)^10. - Colin Barker, Jul 27 2013
MAPLE
b:=binomial; t72a:= proc(a, k) ((2*a+2*k+1)/(2*a+1)) * b(k+3*a/2-1, k)*b(k+3*a/2+1, k)*b(k+2*a, k)/(b(k+a/2-1, k)*b(k+a/2+1, k)); end; [seq(t72a(2, k), k=0..40)];
MATHEMATICA
t72a[a_, k_] := (2k+2a+1) / (2a+1) Binomial[k+3/2a-1, k] Binomial[k+3/2a+1, k] Binomial[k+2a, k] / (Binomial[k+a/2-1, k] Binomial[k+a/2+1, k]);
Array[t72a[2, #]&, 30, 0] (* Paolo Xausa, Jan 10 2024 *)
CROSSREFS
Sequence in context: A133458 A238539 A075664 * A322879 A105947 A183846
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 19 2007
STATUS
approved