The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124297 a(n) = 5*F(n)^2 + 5*F(n) + 1, where F(n) = Fibonacci(n). 8
 1, 11, 11, 31, 61, 151, 361, 911, 2311, 5951, 15401, 40051, 104401, 272611, 712531, 1863551, 4875781, 12760031, 33398201, 87424711, 228859951, 599129311, 1568486161, 4106261531, 10750188961, 28144128251, 73681909211, 192901135711 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS 11 = Lucas(5) divides a(1+10k), a(2+10k), and a(9+10k). Last digit of a(n) is 1, or a(n) mod 10 = 1. For odd n there exists the so-called Aurifeuillian factorization A001946(n) = Lucas(5n) = Lucas(n)*A(n)*B(n) = A000032(n)*A124296(n)*A124297(n), where A(n) = A124296(n) = 5*F(n)^2 - 5*F(n) + 1 and B(n) = A124297(n) = 5*F(n)^2 + 5*F(n) + 1, where F(n) = Fibonacci(n). LINKS John Cerkan, Table of n, a(n) for n = 0..2373 Eric Weisstein's World of Mathematics, Aurifeuillean Factorization Index entries for linear recurrences with constant coefficients, signature (4,-2,-6,4,2,-1). FORMULA a(n) = 5*Fibonacci(n)^2 + 5*Fibonacci(n) + 1. G.f.: -(11*x^5-21*x^4-15*x^3+31*x^2-7*x-1) / ((x-1)*(x+1)*(x^2-3*x+1)*(x^2+x-1)). [Colin Barker, Jan 03 2013] MATHEMATICA Table[5*Fibonacci[n]^2+5*Fibonacci[n]+1, {n, 0, 50}] PROG (PARI) a(n)=subst(5*t*(t+1)+1, t, fibonacci(n)) \\ Charles R Greathouse IV, Jan 03 2013 CROSSREFS Cf. A000032, A000045, A121171, A001946, A124296. Bisections: A001604, A156095. Sequence in context: A218163 A152082 A070849 * A172507 A089766 A077699 Adjacent sequences:  A124294 A124295 A124296 * A124298 A124299 A124300 KEYWORD nonn,easy AUTHOR Alexander Adamchuk, Oct 25 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 16:48 EDT 2021. Contains 343898 sequences. (Running on oeis4.)