login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156095
5 F(2n) (F(2n) + 1) + 1 where F(n) denotes the n-th Fibonacci number.
4
1, 11, 61, 361, 2311, 15401, 104401, 712531, 4875781, 33398201, 228859951, 1568486161, 10750188961, 73681909211, 505020747661, 3461456968201, 23725161388951, 162614629188281, 1114577128871281, 7639424974303651, 52361396909490901
OFFSET
0,2
COMMENTS
Natural bilateral extension (brackets mark index 0): ..., 14851, 2101, 281, 31, 1, [1], 11, 61, 361, 2311, 15401, ... This is A156095-reversed followed by A156095, without repeating the central 1. That is, A156095(-n) = A156094(n).
FORMULA
Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
Alternate formula: a(n) = L(4n) + 5 F(2n) - 1.
Recurrence: a(n) - 10 a(n-1) + 23 a(n-2) - 10 a(n-3) + a(n-4) = -5.
Recurrence: a(n) - 11 a(n-1) + 33 a(n-2) - 33 a(n-3) + 11 a(n-4) - a(n-5) = 0.
G.f.: A(x) = (1 - 27 x^2 + 20 x^3 + x^4)/(1 - 11 x + 33 x^2 - 33 x^3 + 11 x^4 - x^5) = (1 - 27 x^2 + 20 x^3 + x^4)/((1 - x) (1 - 7 x + x^2) (1 - 3 x + x^2)).
a(n)=((2*sqrt(5))/2)*(((3+sqrt(5))/2)^n-((3-sqrt(5))/2)^n)+((7+3*sqrt(5))/2)^n+((7-3*sqrt(5))/2)^n-1. - Tim Monahan, Aug 15 2011
MATHEMATICA
a[n_Integer] := 5 Fibonacci[2n] (Fibonacci[2n] + 1) + 1
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stuart Clary, Feb 04 2009
STATUS
approved