login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

5 F(2n) (F(2n) + 1) + 1 where F(n) denotes the n-th Fibonacci number.
4

%I #8 Feb 10 2014 01:32:34

%S 1,11,61,361,2311,15401,104401,712531,4875781,33398201,228859951,

%T 1568486161,10750188961,73681909211,505020747661,3461456968201,

%U 23725161388951,162614629188281,1114577128871281,7639424974303651,52361396909490901

%N 5 F(2n) (F(2n) + 1) + 1 where F(n) denotes the n-th Fibonacci number.

%C Natural bilateral extension (brackets mark index 0): ..., 14851, 2101, 281, 31, 1, [1], 11, 61, 361, 2311, 15401, ... This is A156095-reversed followed by A156095, without repeating the central 1. That is, A156095(-n) = A156094(n).

%F Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).

%F Alternate formula: a(n) = L(4n) + 5 F(2n) - 1.

%F Recurrence: a(n) - 10 a(n-1) + 23 a(n-2) - 10 a(n-3) + a(n-4) = -5.

%F Recurrence: a(n) - 11 a(n-1) + 33 a(n-2) - 33 a(n-3) + 11 a(n-4) - a(n-5) = 0.

%F G.f.: A(x) = (1 - 27 x^2 + 20 x^3 + x^4)/(1 - 11 x + 33 x^2 - 33 x^3 + 11 x^4 - x^5) = (1 - 27 x^2 + 20 x^3 + x^4)/((1 - x) (1 - 7 x + x^2) (1 - 3 x + x^2)).

%F a(n)=((2*sqrt(5))/2)*(((3+sqrt(5))/2)^n-((3-sqrt(5))/2)^n)+((7+3*sqrt(5))/2)^n+((7-3*sqrt(5))/2)^n-1. - _Tim Monahan_, Aug 15 2011

%t a[n_Integer] := 5 Fibonacci[2n] (Fibonacci[2n] + 1) + 1

%Y Cf. A124296, A124297, A001603, A001604, A156094.

%K nonn,easy

%O 0,2

%A _Stuart Clary_, Feb 04 2009