login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156096
Inverse binomial transform of A030186.
2
1, 1, 4, 6, 18, 32, 84, 164, 400, 824, 1928, 4096, 9360, 20240, 45632, 99680, 223008, 489984, 1091392, 2405952, 5345536, 11806592, 26194048, 57917440, 128389376, 284057856, 629392384, 1393010176, 3085685248, 6830825472, 15128761344
OFFSET
0,3
COMMENTS
A030186 = (1, 2, 7, 22, 71, 228, 733, 2356, 7573, 24342, ...).
FORMULA
a(n) = A007318^(-1) * A030186
From R. J. Mathar, Feb 10 2009: (Start)
a(n) = 4*a(n-2) + 2*a(n-3).
G.f.: (1+x)/(1-4*x^2-2*x^3). (End)
EXAMPLE
a(3) = 6 = (-1, 3, -3, 1) dot (1, 2, 7, 22) = (-1, 6, -21, 22) = 6.
MAPLE
seq(coeff(series((1+x)/(1-4*x^2-2*x^3), x, n+1), x, n), n = 0..40); # G. C. Greubel, Oct 27 2019
MATHEMATICA
LinearRecurrence[{0, 4, 2}, {1, 1, 4}, 40] (* Harvey P. Dale, Apr 05 2014 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1+x)/(1-4*x^2-2*x^3)) \\ G. C. Greubel, Oct 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)/(1-4*x^2-2*x^3) )); // G. C. Greubel, Oct 27 2019
(Sage)
def A156096_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x)/(1-4*x^2-2*x^3)).list()
A156096_list(40) # G. C. Greubel, Oct 27 2019
(GAP) a:=[1, 1, 4];; for n in [4..40] do a[n]:=4*a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Oct 27 2019
CROSSREFS
Cf. A030186.
Sequence in context: A287682 A209236 A182643 * A281861 A218898 A088810
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Feb 03 2009
EXTENSIONS
More terms from R. J. Mathar, Feb 10 2009
STATUS
approved