login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309557
Number triangle with T(n,k) = 2 + 3*n - 2*k + 2*k*(n-k) for n >= 0, 0 <= k <= n.
4
2, 5, 3, 8, 8, 4, 11, 13, 11, 5, 14, 18, 18, 14, 6, 17, 23, 25, 23, 17, 7, 20, 28, 32, 32, 28, 20, 8, 23, 33, 39, 41, 39, 33, 23, 9, 26, 38, 46, 50, 50, 46, 38, 26, 10, 29, 43, 53, 59, 61, 59, 53, 43, 29, 11, 32, 48, 60, 68, 72, 72, 68, 60, 48, 32, 12, 35, 53, 67, 77, 83, 85, 83, 77, 67, 53, 35, 13
OFFSET
0,1
COMMENTS
The rascal triangle (A077028) can be generated by South = (East*West+1)/North or South = East+West+1-North; this triangle can be generated by South = (East*West+1)/North, South = East+West+2-North.
LINKS
Philip K Hotchkiss, Generalized Rascal Triangles, arXiv:1907.11159 [math.HO], 2019.
FORMULA
By rows: a(n,k) = 2 + 3*n - 2*k + 2*k*(n-k) n >= 0, 0 <= k <= n.
By antidiagonals: T(r,k) = 2 + 3*k + r + 2*r*k, r,k >= 0.
G.f.: (x*(-1-4*y+y^2)-2*(1-4*y+y^2))/((-1+x)^2*(-1+y)^3). - Stefano Spezia, Sep 08 2019
EXAMPLE
For row n=3: a(3,0)=11, a(3,1)=13, a(3,2)=11, a(3,3)=5, ...
For antidiagonal r=2: T(2,0)=4, T(2,1)=11, T(2,2)=18, ...
Triangle T begins:
2
5 3
8 8 4
11 13 11 5
14 18 18 14 6
17 23 25 23 17 7
20 28 32 32 28 20 8
23 33 39 41 39 33 23 9
...
MAPLE
:=proc(n, k)
if n<0 or k<0 or k>n then
0;
else
2+3*n -2*k +2*k*(n-k);
end if;
MATHEMATICA
T[n_, k_]:=2+3*n-2*k+2*k*(n-k); Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
f[n_] := Table[SeriesCoefficient[(x*(-1-4*y+y^2)-2*(1-4*y+y^2))/((-1+x)^2*(-1+y)^3), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 0, n}]; Flatten[Array[f, 12, 0]] (* Stefano Spezia, Sep 08 2019 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philip K Hotchkiss, Aug 07 2019
STATUS
approved