login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309555
Triangle read by rows: T(n,k) = 3 + k*(n-k) for n >= 0, 0 <= k <= n.
5
3, 3, 3, 3, 4, 3, 3, 5, 5, 3, 3, 6, 7, 6, 3, 3, 7, 9, 9, 7, 3, 3, 8, 11, 12, 11, 8, 3, 3, 9, 13, 15, 15, 13, 9, 3, 3, 10, 15, 18, 19, 18, 15, 10, 3, 3, 11, 17, 21, 23, 23, 21, 17, 11, 3, 3, 12, 19, 24, 27, 28, 27, 24, 19, 12, 3, 3, 13, 21, 27, 31, 33, 33, 31, 27, 21, 13, 3, 3, 14, 23, 30, 35, 38, 39, 38, 35, 30, 23, 14, 3
OFFSET
0,1
COMMENTS
The rascal triangle (A077028) can be generated by either of the rules South = (East*West+1)/North or South = East+West+1-North; this number triangle can be generated by either of the rules South = (East*West+3)/North or South = East+West+1-North.
It is more suggestive to observe that N*S-E*W = 1 or 3 in the two cases, and (N+S)-(E+W) = 1 in both cases. In fact "3" in the present definition can be replaced by any integer c, and we get a triangle of integers with N*S-E*W = c and (N+S)-(E+W) = 1. I say "suggestive", because these rules also arise in frieze patterns. - N. J. A. Sloane, Aug 28 2019
LINKS
Philip K Hotchkiss, Generalized Rascal Triangles, arXiv:1907.11159 [math.HO], 2019.
FORMULA
By rows: a(n,k) = 3 + k(n-k), n >= 0, 0 <= k <= n.
By antidiagonals: T(r,k) = 3 + r*k, r,k >= 0.
EXAMPLE
For the row n=3: a(3,0)=3, a(3,1)=5, a(3,2)=5, a(3,3)=3, ...
For the antidiagonal r=2: T(2,0)=3, T(2,1)=5, T(2,3)=7, T(2,4)=9, ...
The triangle begins:
..............3..
............3..3..
..........3..4..3..
........3..5...5..3..
......3..6...7...6..3..
....3..7...9...9..7..3..
..3..8..11..12..11..8..3..
3..9..13..15..15..13..9..3.
...
MAPLE
T:= proc(n, k)
if n<0 or k<0 or k>n then
0;
else
k*(n-k)+3 ;
end if;
end:
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
T[n, k]:=k(n-k)+3; T[0, 0] = 3; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philip K Hotchkiss, Aug 07 2019
EXTENSIONS
Missing a(50)=23 inserted by Georg Fischer, Nov 08 2021
STATUS
approved