OFFSET
0,8
FORMULA
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_(i=j..floor((n-j-k-l-m)/2)} (i * ((i-1) mod 2) + j * ((j-1) mod 2) + k * ((k-1) mod 2) + l * ((l-1) mod 2) + m * ((m-1) mod 2) + (n-i-j-k-l-m) * ((n-i-j-k-l-m-1) mod 2)).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[ i * Mod[i - 1, 2] + j * Mod[j - 1, 2] + k * Mod[k - 1, 2] + l * Mod[l - 1, 2] + m * Mod[m - 1, 2] + (n - i - j - k - l - m) * Mod[n - i - j - k - l - m - 1, 2], {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
Table[Total[Select[Flatten[IntegerPartitions[n, {6}]], EvenQ]], {n, 0, 50}] (* Harvey P. Dale, Jun 23 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 07 2019
STATUS
approved