|
|
A230093
|
|
Number of values of k such that k + (sum of digits of k) is n.
|
|
22
|
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,102
|
|
COMMENTS
|
a(n) is the number of times n occurs in A062028.
For n>=1, a(10^n) = a(9*n-1). - Max Alekseyev, Feb 23 2021
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Index entries for Colombian or self numbers and related sequences
|
|
MAPLE
|
# Maple code for A062028, A230093, A003052, A225793, A230094.
with(LinearAlgebra):
read transforms; # to get digsum
M := 1000; A062028 := Array(0..M); A230093 := Array(0..M);
for n from 0 to M do
m := n+digsum(n);
A062028[n] := m;
if m <= M then A230093[m] := A230093[m]+1; fi;
od:
t1:=[seq(A062028[i], i=0..M)]; # A062028 as list (but incorrect offset 1)
t2:=[seq(A230093[i], i=0..M)]; # A230093 as list, but then a(0) has index 1
# A003052 := COMPl(t1); # COMPl has issues, may be incorrect for M <> 1000
ctmax:=4;
for h from 0 to ctmax do ct[h] := []; od:
for i from 1 to M do
h := lis2[i];
if h <= ctmax then ct[h] := [op(ct[h]), i]; fi;
od:
A225793 := ct[1]; A230094 := ct[2]; # A003052 := ct[0]; # see there for better code
|
|
MATHEMATICA
|
Module[{nn=110, a, b, c, d}, a=Tally[Table[x+Total[IntegerDigits[x]], {x, 0, nn}]]; b=a[[All, 1]]; c={#, 0}&/@Complement[Range[nn], b]; d=Sort[Join[a, c]]; d[[All, 2]]] (* Harvey P. Dale, Jun 12 2019 *)
|
|
PROG
|
(Haskell) a230093 n = length $ filter ((== n) . a062028) [n - 9 * a055642 n .. n] -- Reinhard Zumkeller, Oct 11 2013
(PARI) apply( A230093(n)=sum(i=n>0, min(9*logint(n+!n, 10)+8, n\2), sumdigits(n-i)==i), [1..150]) \\ M. F. Hasler, Nov 08 2018
|
|
CROSSREFS
|
Cf. A006064, A007953 (sum of digits), A062028 (n + sum of its digits), A004207, A228085, A003052, A176995, A225793, A230094, A055642.
Cf. A107740 (this applied to primes).
Sequence in context: A073520 A152137 A097470 * A033322 A329679 A130713
Adjacent sequences: A230090 A230091 A230092 * A230094 A230095 A230096
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
N. J. A. Sloane, Oct 10 2013
|
|
EXTENSIONS
|
Edited by M. F. Hasler, Nov 08 2018
|
|
STATUS
|
approved
|
|
|
|