OFFSET
0,6
COMMENTS
wt(k) is also called bitcount(k).
a(n) = number of times n occurs in A092391.
The first 3 occurs at n = A230303(3) = 129 (as we have three solutions A092391(123) = A092391(124) = A092391(128) = 129).
The first 4 occurs at n = A230303(4) = 4102, where we have solutions A092391(4091) = A092391(4092) = A092391(4099) = A092391(4100) = 4102.
For n>=1, a(2^n) = a(n-1) since an integer k = m is a solution to n-1 = m + wt(m) if and only if k = 2^n - 1 - m is a solution to 2^n = k + wt(k). - Max Alekseyev, Feb 23 2021
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..8191
Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
MAPLE
For Maple code see A230091. - N. J. A. Sloane, Oct 10 2013
# Find all inverses of m under x -> x + wt(x) - N. J. A. Sloane, Oct 19 2013
A000120 := proc(n) local w, m, i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end: wt := A000120;
F:=proc(m) local ans, lb, n, i;
lb:=m-ceil(log(m+1)/log(2)); ans:=[];
for n from max(1, lb) to m do if (n+wt(n)) = m then ans:=[op(ans), n]; fi; od:
[seq(ans[i], i=1..nops(ans))];
end;
MATHEMATICA
nmax = 8191; Clear[a]; a[_] = 0;
Scan[Set[a[#[[1]]], #[[2]]]&, Tally[Table[n + DigitCount[n, 2, 1], {n, 0, nmax}]]];
a /@ Range[0, nmax] (* Jean-François Alcover, Oct 29 2019 *)
a[n_] := Module[{k, cnt = 0}, For[k = n - Floor[Log[2, n]] - 1, k < n, k++, If[n == k + DigitCount[k, 2, 1], cnt++]]; cnt];
a /@ Range[0, 100] (* Jean-François Alcover, Nov 28 2020 *)
PROG
(Haskell)
a228085 n = length $ filter ((== n) . a092391) [n - a070939 n .. n]
-- Reinhard Zumkeller, Oct 13 2013
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Aug 09 2013
STATUS
approved