login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228085
a(n) = number of distinct k which satisfy n = k + wt(k), where wt(k) (A000120) gives the number of 1's in binary representation of a nonnegative integer k.
23
1, 0, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0
OFFSET
0,6
COMMENTS
wt(k) is also called bitcount(k).
a(n) = number of times n occurs in A092391.
The first 2 occurs at n = A230303(2) = 5 (as we have two solutions A092391(3) = A092391(4) = 5).
The first 3 occurs at n = A230303(3) = 129 (as we have three solutions A092391(123) = A092391(124) = A092391(128) = 129).
The first 4 occurs at n = A230303(4) = 4102, where we have solutions A092391(4091) = A092391(4092) = A092391(4099) = A092391(4100) = 4102.
For n>=1, a(2^n) = a(n-1) since an integer k = m is a solution to n-1 = m + wt(m) if and only if k = 2^n - 1 - m is a solution to 2^n = k + wt(k). - Max Alekseyev, Feb 23 2021
LINKS
Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
MAPLE
For Maple code see A230091. - N. J. A. Sloane, Oct 10 2013
# Find all inverses of m under x -> x + wt(x) - N. J. A. Sloane, Oct 19 2013
A000120 := proc(n) local w, m, i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end: wt := A000120;
F:=proc(m) local ans, lb, n, i;
lb:=m-ceil(log(m+1)/log(2)); ans:=[];
for n from max(1, lb) to m do if (n+wt(n)) = m then ans:=[op(ans), n]; fi; od:
[seq(ans[i], i=1..nops(ans))];
end;
MATHEMATICA
nmax = 8191; Clear[a]; a[_] = 0;
Scan[Set[a[#[[1]]], #[[2]]]&, Tally[Table[n + DigitCount[n, 2, 1], {n, 0, nmax}]]];
a /@ Range[0, nmax] (* Jean-François Alcover, Oct 29 2019 *)
a[n_] := Module[{k, cnt = 0}, For[k = n - Floor[Log[2, n]] - 1, k < n, k++, If[n == k + DigitCount[k, 2, 1], cnt++]]; cnt];
a /@ Range[0, 100] (* Jean-François Alcover, Nov 28 2020 *)
PROG
(Haskell)
a228085 n = length $ filter ((== n) . a092391) [n - a070939 n .. n]
-- Reinhard Zumkeller, Oct 13 2013
CROSSREFS
A010061 gives the position of zeros, A228082 the positions of nonzeros, A228088 the positions of ones.
Cf. A000120, A010062, A092391, A228086, A228087, A228091 (positions of 2's), A227643, A230058, A230092 (positions of 3's), A230093, A227915 (positions of 4's), A070939, A230303.
Sequence in context: A286627 A182071 A317992 * A154782 A265196 A171157
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Aug 09 2013
STATUS
approved