login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171157
Number of distinct primes > 3 that divide n.
1
0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2
OFFSET
1,35
LINKS
FORMULA
a(n) = A001221(n) - A171182(n).
MAPLE
omega := proc(n) nops(numtheory[factorset](n)) ; end proc:
A171182 := proc(n) op(1+ (n mod 6), [2, 0, 1, 1, 1, 0]) ; end proc:
A171157 := proc(n) omega(n)-A171182(n) ; end proc: seq(A171157(n), n=1..120) ; # R. J. Mathar, Dec 09 2009
MATHEMATICA
Table[PrimeNu[n] - (5 + 3*Cos[n*Pi] + 4*Cos[2*n*Pi/3])/6, {n, 1, 100}] (* G. C. Greubel, May 16 2017 *)
Table[Count[FactorInteger[n][[;; , 1]], _?(#>3&)], {n, 110}] (* Harvey P. Dale, Nov 16 2024 *)
PROG
(PARI) for(n=1, 100, print1(round(omega(n) - (5 + 3*cos(n*Pi) + 4*cos(2*n*Pi/3))/6), ", ")) \\ G. C. Greubel, May 16 2017
CROSSREFS
Sequence in context: A228085 A154782 A265196 * A194301 A194341 A171905
KEYWORD
nonn
AUTHOR
STATUS
approved