OFFSET
0,4
COMMENTS
For any k>0, it is possible to transform a pair of symmetric tilings of length 2*k-1 that share no tile with their mirrored image into a pair of symmetric tilings of length 2*k with the same property by inserting a 1 X 1 tile next to the central 2 X 1 tile :
+- ... -+---+- ... -+ +- ... -+---+-+- ... -+
| ABC | | XYZ | | ABC | |X| XYZ |
+- .. +-+o+-+ .. -+ <--> +- .. +-+-o-+-+ .. -+
| ZYX | | CBA | | ZYX |X| | CBA |
+- ... -+---+- ... -+ +- ... -+-+---+- ... -+
This transformation is reversible, hence a(2*k-1) = a(2*k) for any k>0. - Paul Tek, Oct 15 2013
LINKS
Paul Tek, Table of n, a(n) for n = 0..6646
Paul Tek, Illustration of the first terms
Index entries for linear recurrences with constant coefficients, signature (0,1,0,2).
FORMULA
[0 1 1] [1]
a(2*k) = [1 0 0] * [1 0 1]^k * [0], for any k>=0.
[1 1 0] [0]
[0 1 1] [0]
a(2*k-1) = [1 0 0] * [1 0 1]^k * [1], for any k>=1.
[1 1 0] [1]
a(n) = a(n-2)+2*a(n-4). G.f.: -(2*x^3-x^2+1) / ((x^2+1)*(2*x^2-1)). - Colin Barker, Oct 14 2013
a(n) = A078008(floor((n+1)/2)). - Ralf Stephan, Oct 18 2013
EXAMPLE
A 5 x 1 rectangle can be tiled in 8 ways:
+-+-+-+-+-+
- |=|=|=|=|=| that shares 5 tiles with its mirrored image,
+-+-+-+-+-+
+-+-+-+---+
- | | |=| | that shares 1 tile with its mirrored image,
+-+-+-+---+
+-+-+---+-+
- |=| | |=| that shares 2 tiles with its mirrored image,
+-+-+---+-+
+-+---+-+-+
- |=| | |=| that shares 2 tiles with its mirrored image,
+-+---+-+-+
+-+---+---+
- | | | | that shares no tile with its mirrored image,
+-+---+---+
+---+-+-+-+
- | |=| | | that shares 1 tile with its mirrored image,
+---+-+-+-+
+---+-+---+
- | = |=| = | that shares 3 tiles with its mirrored image,
+---+-+---+
+---+---+-+
- | | | | that shares no tile with its mirrored image.
+---+---+-+
Hence, a(5)=2.
PROG
(PARI) M=[0, 1, 1; 1, 0, 1; 1, 1, 0];
a(n)=if(n%2==0, [1, 0, 0]*M^(n/2)*[1; 0; 0], [1, 0, 0]*M^((n-1)/2)*[0; 1; 1])[1]
(PARI) Vec(-(2*x^3-x^2+1)/((x^2+1)*(2*x^2-1)) + O(x^100)) \\ Colin Barker, Oct 15 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Tek, Oct 13 2013
STATUS
approved