login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376947
G.f.: Sum_{k>=0} 2^k * x^(k*(k+1)) / Product_{j=1..k} (1 - x^j).
3
1, 0, 2, 2, 2, 2, 6, 6, 10, 10, 14, 14, 26, 26, 38, 46, 58, 66, 86, 94, 130, 146, 182, 214, 274, 306, 382, 438, 530, 602, 750, 838, 1018, 1162, 1390, 1598, 1898, 2154, 2550, 2910, 3402, 3858, 4550, 5134, 5970, 6786, 7846, 8902, 10306, 11618, 13390, 15142, 17346, 19562, 22398
OFFSET
0,3
COMMENTS
In general, if d >= 1, b > 0 and g.f. = Sum_{k>=0} d^k * x^(b*k^2 + c*k) / Product_{j=1..k} (1 - x^j), then a(n) ~ r^c * (b*log(r)^2 + polylog(2, 1-r))^(1/4) * exp(2*sqrt((b*log(r)^2 + polylog(2, 1-r))*n)) / (2*sqrt((2*b*(1-r) + r)*Pi) * n^(3/4)), where r is the smallest positive real root of the equation d*r^(2*b) + r = 1.
LINKS
FORMULA
a(n) ~ (Pi^2/6 + log(2)^2)^(1/4) * exp(sqrt((Pi^2/3 + 2*log(2)^2)*n)) / (2^(7/4) * sqrt(3*Pi) * n^(3/4)).
MATHEMATICA
nmax = 80; CoefficientList[Series[Sum[2^k*x^(k*(k+1)) / Product[1-x^j, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 10 2024
STATUS
approved