The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038714 Promic numbers repeated 4 times; a(n) = floor(n/4) * ceiling((n+1)/4). 1
 0, 0, 0, 0, 2, 2, 2, 2, 6, 6, 6, 6, 12, 12, 12, 12, 20, 20, 20, 20, 30, 30, 30, 30, 42, 42, 42, 42, 56, 56, 56, 56, 72, 72, 72, 72, 90, 90, 90, 90, 110, 110, 110, 110, 132, 132, 132, 132, 156, 156, 156, 156, 182, 182, 182, 182, 210, 210, 210, 210, 240 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS From Wesley Ivan Hurt, Nov 25 2017: (Start) a(n) is the sum of the smallest even parts in the partitions of n into two parts. For example, a(8) = 6; the partitions of 8 into two parts is (7,1), (6,2), (5,3) and (4,4). The sum of the smallest even parts is then 2+4 = 6. For n>0, a(n-1) is the sum of the smallest even parts in the partitions of n into two distinct parts. For example, a(11) = 6; the partitions of 12 into two distinct parts is (11,1), (10,2), (9,3), (8,4) and (7,5). The sum of the smallest even parts is then 2+4 = 6. (End) LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,0,0,-1,1). FORMULA a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9). - R. J. Mathar, Mar 11 2012 From Wesley Ivan Hurt, Nov 25 2017: (Start) a(n) = floor(n/4) * (floor(n/4) + 1). a(n) = Sum_{i=1..floor(n/2)} i * ((i+1) mod 2). (End) G.f.: 2*x^4 / ((1 - x)^3*(1 + x)^2*(1 + x^2)^2). - Colin Barker, Nov 26 2017 a(n) = A002378(A004526(n)). - Wesley Ivan Hurt, Nov 26 2017 a(n) = (2*n + 2*(-1)^((2*n + (-1)^n - 1)/4) + (-1)^n - 3)*(2*n + 2*(-1)^((2*n + (-1)^n - 1)/4) + (-1)^n + 5)/64. - Iain Fox, Nov 27 2017 MAPLE A038714:=n->floor(n/4)*ceil((n+1)/4): seq(A038714(n), n=0..100); # Wesley Ivan Hurt, Nov 26 2017 MATHEMATICA Table[Floor[n/4] Ceiling[(n + 1)/4], {n, 0, 100}] (* Wesley Ivan Hurt, Nov 26 2017 *) PROG (PARI) concat(vector(4), Vec(2*x^4 / ((1 - x)^3*(1 + x)^2*(1 + x^2)^2) + O(x^40))) \\ Colin Barker, Nov 26 2017 (MAGMA) [Floor(n/4)*Ceiling((n+1)/4) : n in [0..100]]; // Wesley Ivan Hurt, Nov 26 2017 CROSSREFS Cf. A002378, A004526. Sequence in context: A048764 A327663 A248782 * A139554 A230096 A116564 Adjacent sequences:  A038711 A038712 A038713 * A038715 A038716 A038717 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 02 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 03:42 EDT 2021. Contains 347478 sequences. (Running on oeis4.)