login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038715
a(n) = floor(n/4)*ceiling((n+2)/4).
1
0, 0, 0, 0, 2, 2, 2, 3, 6, 6, 6, 8, 12, 12, 12, 15, 20, 20, 20, 24, 30, 30, 30, 35, 42, 42, 42, 48, 56, 56, 56, 63, 72, 72, 72, 80, 90, 90, 90, 99, 110, 110, 110, 120, 132, 132, 132, 143, 156, 156, 156, 168, 182, 182, 182, 195, 210, 210, 210, 224, 240
OFFSET
0,5
COMMENTS
The three fixed points of this sequence are 0, 12 and 15. - Bernard Schott, Feb 27 2023
FORMULA
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-5) + 2*a(n-6) - 2*a(n-7) + a(n-8). - R. J. Mathar, Mar 11 2012
a(n) = A002265(n)*A002265(n+5). - Michel Marcus, Feb 27 2023
From Amiram Eldar, Mar 04 2023: (Start)
Sum_{n>=4} 1/a(n) = 15/4.
Sum_{n>=4} (-1)^n/a(n) = 1/4. (End)
MAPLE
Sequence = seq(floor(n/4)*ceiling((n+2)/4), n=0..60); # Bernard Schott, Mar 01 2023
MATHEMATICA
LinearRecurrence[{2, -2, 2, 0, -2, 2, -2, 1}, {0, 0, 0, 0, 2, 2, 2, 3}, 80] (* Harvey P. Dale, Nov 05 2014 *)
PROG
(Python)
def A038715(n): return (n>>2)*(1+(n+1>>2)) # Chai Wah Wu, Feb 02 2023
(PARI) a(n) = (n\4)*((n+5)\4); \\ Michel Marcus, Feb 27 2023
CROSSREFS
Cf. A002265.
Sequence in context: A104856 A306393 A324763 * A293518 A057040 A363772
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 02 2000
STATUS
approved