OFFSET
0,5
COMMENTS
The three fixed points of this sequence are 0, 12 and 15. - Bernard Schott, Feb 27 2023
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,-2,2,0,-2,2,-2,1).
FORMULA
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-5) + 2*a(n-6) - 2*a(n-7) + a(n-8). - R. J. Mathar, Mar 11 2012
From Amiram Eldar, Mar 04 2023: (Start)
Sum_{n>=4} 1/a(n) = 15/4.
Sum_{n>=4} (-1)^n/a(n) = 1/4. (End)
MAPLE
Sequence = seq(floor(n/4)*ceiling((n+2)/4), n=0..60); # Bernard Schott, Mar 01 2023
MATHEMATICA
LinearRecurrence[{2, -2, 2, 0, -2, 2, -2, 1}, {0, 0, 0, 0, 2, 2, 2, 3}, 80] (* Harvey P. Dale, Nov 05 2014 *)
PROG
(Python)
def A038715(n): return (n>>2)*(1+(n+1>>2)) # Chai Wah Wu, Feb 02 2023
(PARI) a(n) = (n\4)*((n+5)\4); \\ Michel Marcus, Feb 27 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 02 2000
STATUS
approved