login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038711
a(n) is the smallest m such that A002110(n) + m is prime.
10
1, 1, 1, 1, 1, 1, 17, 19, 23, 37, 61, 1, 61, 71, 47, 107, 59, 61, 109, 89, 103, 79, 151, 197, 101, 103, 233, 223, 127, 223, 191, 163, 229, 643, 239, 157, 167, 439, 239, 199, 191, 199, 383, 233, 751, 313, 773, 607, 313, 383, 293, 443, 331, 283, 277, 271, 401, 307
OFFSET
0,7
COMMENTS
Any composite a(n) would disprove Fortune's conjecture, see A005235. - Jeppe Stig Nielsen, Oct 31 2003
LINKS
FORMULA
a(n) = Min(1, A005235(n)); a(n)=1 for n=1, 2, 3, 4, 5, 11, 75, ...
a(n) = 1 for n=0, 1, 2, 3, 4, 5, 11, 75, ... (A014545); a(n) = A005235(n) otherwise. - Jeppe Stig Nielsen, Oct 31 2003
a(n) = A038710(n) - A002110(n). - Alois P. Heinz, Mar 16 2020
EXAMPLE
For n=11, 1 + A002110(11) = 200560490131 < 200560490197 = 67 + A002110(11); therefore, a(11)=1 but A005235(11)=67.
MAPLE
p:= proc(n) option remember; `if`(n<1, 1, p(n-1)*ithprime(n)) end:
a:= n-> nextprime(p(n))-p(n):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 16 2020
MATHEMATICA
nmax=2^16384; npd=1; n=1; npd=npd*Prime[n]; While[npd<nmax, tt=1; cp=npd+tt; While[ !(PrimeQ[cp]), tt=tt+2; cp=cp+2]; Print[tt]; n=n+1; npd=npd*Prime[n]] (* Lei Zhou, Feb 15 2005 *)
PROG
(PARI) a(n) = my(P=vecprod(primes(n))); nextprime(P+1) - P; \\ Michel Marcus, Dec 12 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, May 02 2000
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Mar 16 2020
STATUS
approved