

A108266


Consider primes p and q such that p = 2^k + 15 and q = 2^(k+1) + 15 for some k; sequence gives values of p.


1




OFFSET

1,1


COMMENTS

No additional terms up to k=100,000.  Harvey P. Dale, Apr 10 2017


LINKS

Table of n, a(n) for n=1..9.


MATHEMATICA

2^#+15&/@SequencePosition[Table[If[PrimeQ[2^n+15], 1, 0], {n, 1000}], {1, 1}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 10 2017 *)


PROG

(PARI) g(m, n, b) = { for(x=0, n, y=m+b^x+b%2; z=m+b^(x+1)+b%2; if(isprime(y)&isprime(z), print1(y", ") ) ) }


CROSSREFS

Cf. A108271.
Sequence in context: A228070 A289685 A144487 * A102325 A231326 A038711
Adjacent sequences: A108263 A108264 A108265 * A108267 A108268 A108269


KEYWORD

nonn


AUTHOR

Cino Hilliard, Jun 29 2005


STATUS

approved



