

A154881


First prime in a consecutive sequence of 6 primes such that, when taken as ordered x,y,z triples, the Cartesian distance between the two points is an integer.


1



17, 19, 23, 53, 263, 293, 811, 839, 1277, 1279, 1283, 1373, 1607, 1619, 1877, 3413, 3527, 3593, 3967, 4127, 4423, 4637, 4943, 5273, 5471, 5839, 6029, 6271, 6473, 6529, 7127, 7219, 7237, 7307, 7741, 8237, 8273, 8293, 8513, 8761, 9109, 9323, 9473, 9587
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000


EXAMPLE

a(1)=17 because the distance between (17,19,23) and (29,31,37) is 22. a(7)=811 because the distance between (811,821,823) and (827,829,839) is 24.


MATHEMATICA

cdiQ[n_]:=Module[{a=Take[n, 3], b=Take[n, 3]}, IntegerQ[Sqrt[Total[(ab)^2]]]]; Select[Partition[Prime[Range[1200]], 6, 1], cdiQ][[All, 1]] (* Harvey P. Dale, Apr 10 2019 *)


CROSSREFS

Sequence in context: A231326 A038711 A288613 * A226684 A249566 A205646
Adjacent sequences: A154878 A154879 A154880 * A154882 A154883 A154884


KEYWORD

easy,nonn


AUTHOR

Gil Broussard, Jan 16 2009


STATUS

approved



