login
A334287
Smallest full reptend prime p such that there is a gap of exactly 2n between p and the next full reptend prime, or 0 if no such prime exists.
1
17, 19, 23, 491, 7, 47, 419, 577, 29, 0, 1789, 233, 461, 433, 193, 509, 823, 61, 1979, 1327, 659, 269, 11503, 1381, 887, 14251, 3167, 8297, 3469, 0, 7247, 15073, 2473, 743, 19309, 4349, 21503, 12823, 14939, 3863, 5419, 6389, 24137, 27211, 10343, 13577, 18979
OFFSET
1,1
COMMENTS
Gaps of length congruent to 20 mod 40 do not exist. All full reptend primes are either 7, 11, 17, 19, 21, 23, 29, or 33 mod 40, and no difference of 20 exists between any of these numbers.
LINKS
Eric Weisstein's World of Mathematics, Full Reptend Prime
EXAMPLE
a(9) = 29 because there is a gap of 2*9 = 18 between 29 and the next full reptend prime 47.
a(10) = 0 because no gap of 2*10 = 20 exists between full reptend primes.
PROG
(PARI) is(p) = Mod(10, p)^(p\2)==-1 && znorder(Mod(10, p))+1==p;
isok(p, n) = {if (! is(p), return (0)); if (isprime(p+n) && is(p+n), forprime(q=p+1, p+n-1, if (is(q), return (0)); ); return (1); ); }
a(n) = {n *= 2; if ((n % 40) == 20, return (0)); my (p = 2); while (! isok(p, n), p = nextprime(p+1)); p; } \\ Michel Marcus, Apr 22 2020
CROSSREFS
Cf. A001913.
Sequence in context: A288613 A154881 A226684 * A249566 A205646 A281192
KEYWORD
nonn
AUTHOR
Martin Raab, Apr 21 2020
STATUS
approved