

A097470


Number of 0's in the decimal expansion of the lesser of twin primes.


0



0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,104


COMMENTS

n=5000,d=0 in PARI code below.


LINKS

Table of n, a(n) for n=2..106.


EXAMPLE

101 is the 9th lesser twin prime so 1 is the 9th entry.


PROG

(PARI) g(n, d) = forprime(x=2, n, if(isprime(x+2), print1(countchr(x, d)", "))) \Count the occurrences of char in string str countchr(str, char) = { local(ln, x, c); str=Str(str); \This allows leaving quotes off input char=Str(char); c=0; ln=length(str); for(x=1, ln, if(mid(str, x, 1)==char, c++); ); return(c) } \ Get a substring of length n from string str starting at position s in str. mid(str, s, n) = { local(v, ln, x, tmp); v =""; tmp = Vec(str); ln=length(tmp); for(x=s, s+n1, v=concat(v, tmp[x]); ); return(v) }


CROSSREFS

Sequence in context: A073520 A152137 * A230093 A033322 A130713 A236619
Adjacent sequences: A097467 A097468 A097469 * A097471 A097472 A097473


KEYWORD

base,nonn


AUTHOR

Cino Hilliard, Aug 24 2004


STATUS

approved



