OFFSET
0,3
COMMENTS
Compare to: G(x) = Sum_{n>=0} (1 + x*G(x)^k)^n / 2^(n+1) holds when G(x) = 1 + x*G(x)^(k+1) for fixed k.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..100
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} (1 + x*A(x)^n)^n / 2^(n+1).
(2) A(x) = Sum_{n>=0} x^n * A(x)^(n^2) / (2 - A(x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 250*x^4 + 2558*x^5 + 28594*x^6 + 340486*x^7 + 4255344*x^8 + 55300776*x^9 + 742732646*x^10 + ...
such that
A(x) = 1/2 + (1 + x*A(x))/2^2 + (1 + x*A(x)^2)^2/2^3 + (1 + x*A(x)^3)^3/2^4 + (1 + x*A(x)^4)^4/2^5 + (1 + x*A(x)^5)^5/2^6 + (1 + x*A(x)^6)^6/2^7 + ...
Also, due to a series identity,
A(x) = 1 + x*A(x)/(2 - A(x))^2 + x^2*A(x)^4/(2 - A(x)^2)^3 + x^3*A(x)^9/(2 - A(x)^3)^4 + x^4*A(x)^16/(2 - A(x)^4)^5 + x^5*A(x)^25/(2 - A(x)^5)^6 + x^6*A(x)^36/(2 - A(x)^6)^7 + ... + x^n * A(x)^(n^2) / (2 - A(x)^n)^(n+1) + ...
PROG
(PARI) {a(n) = my(A=1); for(i=0, n, A = sum(m=0, n, x^m * A^(m^2) / (2 - A^m + x*O(x^n))^(m+1) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 27 2018
STATUS
approved