login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302104
G.f. A(x) satisfies: A(x) = Sum_{n>=0} (3 + x*A(x)^n)^n / 4^(n+1).
4
1, 1, 8, 112, 1972, 39404, 853892, 19591692, 469250416, 11628163256, 296351290004, 7736140181364, 206273152705660, 5606990999026252, 155184267041459384, 4370129283473065984, 125189806731347999476, 3648813481714933367516, 108265665575110494127284, 3273367006162760350945260, 100977120404026793376264880, 3183255539561434435490787720
OFFSET
0,3
COMMENTS
Compare to: G(x) = Sum_{n>=0} (3 + x*G(x)^k)^n / 4^(n+1) holds when G(x) = 1 + x*G(x)^(k+1) for fixed k.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} (3 + x*A(x)^n)^n / 4^(n+1).
(2) A(x) = Sum_{n>=0} x^n * A(x)^(n^2) / (4 - 3*A(x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 112*x^3 + 1972*x^4 + 39404*x^5 + 853892*x^6 + 19591692*x^7 + 469250416*x^8 + 11628163256*x^9 + 296351290004*x^10 + ...
such that
A(x) = 3/4 + (3 + x*A(x))/4^2 + (3 + x*A(x)^2)^2/4^3 + (3 + x*A(x)^3)^3/4^4 + (3 + x*A(x)^4)^4/4^5 + (3 + x*A(x)^5)^5/4^6 + (3 + x*A(x)^6)^6/4^7 + ...
Also, due to a series identity,
A(x) = 1 + x*A(x)/(4 - 3*A(x))^2 + x^2*A(x)^4/(4 - 3*A(x)^2)^3 + x^3*A(x)^9/(4 - 3*A(x)^3)^4 + x^4*A(x)^16/(4 - 3*A(x)^4)^5 + x^5*A(x)^25/(4 - 3*A(x)^5)^6 + x^6*A(x)^36/(4 - 3*A(x)^6)^7 + ... + x^n * A(x)^(n^2) / (4 - 3*A(x)^n)^(n+1) + ...
PROG
(PARI) {a(n) = my(A=1); for(i=0, n, A = sum(m=0, n, x^m * A^(m^2) / (4 - 3*A^m + x*O(x^n))^(m+1) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 05 2018
STATUS
approved