login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302107
G.f. A(x) satisfies: [x^(n+1)] A(x)^(n^2) / (x*A(x)^n)' = 0 for n>=0.
0
1, 1, 1, 1, 7, 211, 8411, 412301, 24894581, 1832290133, 162840289853, 17318483860823, 2184687906940713, 323935018037153709, 55939700211256251813, 11149440249347239643775, 2542901827027280314993359, 658411118385997264277976111, 192135231563520713206597464479, 62778202074038700301319695876973, 22831139565407893815484402030333403
OFFSET
0,5
COMMENTS
Compare to: [x^(n-1)] (x*F(x)^n)' / F(x)^(n^2) = 0 for n>0 holds when F(0) = 1.
FORMULA
G.f. A(x) satisfies: [x^(n+1)] A(x)^(n^2-n+1) / (A(x) + n*x*A'(x)) = 0 for n>=0.
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + 7*x^4 + 211*x^5 + 8411*x^6 + 412301*x^7 + 24894581*x^8 + 1832290133*x^9 + 162840289853*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(n^2) / (x*A(x)^n)' begins:
n=0: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=1: [1, -1, 0, 0, -24, -972, -47184, -2729850, -190252260, ...];
n=2: [1, 0, 1, 0, -35, -1536, -78051, -4655400, -331711815, ...];
n=3: [1, 3, 9, 17, 0, -1674, -94734, -5917068, -433817613, ...];
n=4: [1, 8, 42, 160, 497, 0, -90536, -6434272, -496083426, ...];
n=5: [1, 15, 130, 810, 4075, 16929, 0, -5638950, -504633465, ...];
n=6: [1, 24, 315, 2920, 21396, 132264, 707500, 0, -412691760, ...];
n=7: [1, 35, 651, 8435, 85225, 716457, 5290089, 35515563, 0, ...]; ...
illustrating that the coefficient of x^(n+1) in A(x)^(n^2) / (x*A(x)^n)' equals 0 for n>=0.
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=1, n, A = concat(A, 0); A[#A] = Vec( Ser(A)^((#A-2)^2)/(x*Ser(A)^(#A-2))' )[#A]/if(#A==2, 1, 2*(#A-2)) ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A300995.
Sequence in context: A065819 A241649 A256288 * A061028 A012862 A045760
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 05 2018
STATUS
approved