login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300995 G.f. A(x) satisfies: [x^n] A(x)^(n*(n+1)) / (x*A(x)^(n+1))' = 0 for n>1. 6
1, 1, 2, 19, 648, 35034, 2670208, 272185631, 35771059816, 5898174461866, 1193978013414012, 291425454605906442, 84460020885960997128, 28684514514013845794992, 11286674783772300965795444, 5094396145960067896123076579, 2614825930760477198096727703504, 1514515134552667357882578305228354 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Odd terms appear to occur only at positions 2^n - 1 for n>=0.

Compare to: [x^n] (x*F(x)^n)' / F(x)^(n*(n+1)) = 0 for n>1 holds when F(0) = 1.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..300

FORMULA

G.f. A(x) satisfies: [x^n] A(x)^(n^2) / (A(x) + (n+1)*x*A'(x)) = 0 for n>1.

a(n) ~ c * 2^n * n!^2, where c = 0.093409272388974721425474653920126051... - Vaclav Kotesovec, Oct 20 2020

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 19*x^3 + 648*x^4 + 35034*x^5 + 2670208*x^6 + 272185631*x^7 + 35771059816*x^8 + 5898174461866*x^9 + ...

such that [x^n] A(x)^(n*(n+1)) / (x*A(x)^(n+1))' = 0 for n>1.

ILLUSTRATION OF DEFINITION.

The table of coefficients in A(x)^(n*(n+1)) / (x*A(x)^(n+1))' begins:

n=0: [1, -2, -2, -60, -2956, -197300, -17847672, -2102383528, ...];

n=1: [1, -2, -2, -88, -4634, -323628, -30231156, -3645343392, ...];

n=2: [1, 0, 0, -86, -5211, -389844, -37957504, -4706848080, ...];

n=3: [1, 4, 16, 0, -4318, -390512, -40986336, -5301293056, ...];

n=4: [1, 10, 70, 400, 0, -294292, -38253360, -5373817820, ...];

n=5: [1, 18, 198, 1760, 15084, 0, -26932912, -4775237568, ...];

n=6: [1, 28, 448, 5502, 63581, 818104, 0, -3197458336, ...];

n=7: [1, 40, 880, 14304, 204524, 3166480, 61757056, 0, ...];

n=8: [1, 54, 1566, 32700, 572292, 9885564, 214256808, 6302260080, 0, ...]; ...

in which the main diagonal consists of all zeros after the initial terms, illustrating that [x^n] A(x)^(n*(n+1)) / (x*A(x)^(n+1))' = 0 for n>1.

RELATED SERIES.

log(A(x)) = x + 3*x^2/2 + 52*x^3/3 + 2515*x^4/4 + 171846*x^5/5 + 15806406*x^6/6 + 1886292528*x^7/7 + 283963660371*x^8/8 + 52758607655410*x^9/9 + ...

PROG

(PARI) {a(n) = my(A=[1, 1]); for(i=1, n, A = concat(A, 0); A[#A] = Vec( Ser(A)^(#A*(#A-1))/(x*Ser(A)^(#A))' )[#A]/(#A)); A[n+1]}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A302060, A300994, A300627, A302059.

Sequence in context: A296235 A290302 A278840 * A086976 A118189 A062623

Adjacent sequences:  A300992 A300993 A300994 * A300996 A300997 A300998

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 29 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 30 11:46 EDT 2021. Contains 346359 sequences. (Running on oeis4.)