login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302060
G.f. A(x) satisfies: [x^n] A(x)^(n*(n+1)-1) / (x*A(x)^n)' = 0 for n>1.
5
1, 1, 3, 107, 11627, 2513589, 949355653, 575357369483, 525974349806337, 691365121056215549, 1257552573597625318887, 3067926576692255188333527, 9781672352885807666285800891, 39881788154276616499389883709989, 204117604287379008572673888063188001, 1290628051526744629398741843471306433463
OFFSET
0,3
COMMENTS
Compare to: [x^n] (x*F(x)^n)' / F(x)^(n*(n+1)) = 0 for n>1 holds when F(0) = 1.
Note that [x^n] G(x,k)^(k*(n+1)-1) / (x*G(x,k)^k)' = 0 is satisfied by an integer series G(x,k) when k is a fixed positive integer; the g.f. of this sequence explores the case when k varies with n.
LINKS
FORMULA
G.f. A(x) satisfies: [x^n] A(x)^(n^2) / (A(x) + n*x*A'(x)) = 0 for n>1.
a(n) ~ c * 2^n * n!^3 / n, where c = 0.2754104367997800017735528000516901713205624917... - Vaclav Kotesovec, Oct 20 2020
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 107*x^3 + 11627*x^4 + 2513589*x^5 + 949355653*x^6 + 575357369483*x^7 + 525974349806337*x^8 + 691365121056215549*x^9 + ...
such that [x^n] A(x)^(n*(n+1)-1) / (x*A(x)^n)' = 0 for n>1.
ILLUSTRATION OF DEFINITION.
The table of coefficients in A(x)^(n*(n+1)-1) / (x*A(x)^n)' begins:
n=0: [1, -1, -2, -102, -11412, -2490030, -944283630, -573448825894, ...];
n=1: [1, -1, -4, -304, -45436, -12414490, -5655451828, -4009336016960, ...];
n=2: [1, 1, 0, -296, -56621, -17380683, -8487839136, -6303946190960, ...];
n=3: [1, 5, 22, 0, -43410, -17309652, -9440759988, -7462899694108, ...];
n=4: [1, 11, 86, 874, 0, -11796810, -8449485806, -7468455619310, ...];
n=5: [1, 19, 228, 3068, 88298, 0, -5377376960, -6278167743244, ...];
n=6: [1, 29, 496, 8136, 256299, 19641657, 0, -3822351028528, ...];
n=7: [1, 41, 950, 18924, 581824, 50072326, 8025251308, 0, ...]; ...
in which the main diagonal consists of all zeros after the initial terms, illustrating that [x^n] A(x)^(n*(n+1)-1) / (x*A(x)^n)' = 0 for n>1.
RELATED SERIES.
log(A(x)) = x + 5*x^2/2 + 313*x^3/3 + 46073*x^4/4 + 12508771*x^5/5 + 5680881713*x^6/6 + 4020812685695*x^7/7 + 4203174178089489*x^8/8 + 6217540835502410521*x^9/9 + ...
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=1, n, A = concat(A, 0); A[#A] = Vec( Ser(A)^(#A*(#A-1)-1)/(x*Ser(A)^(#A-1))' )[#A] ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 31 2018
STATUS
approved