login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296235
E.g.f. satisfies: A(x) = Sum_{n>=0} (n+1)^(2*n-1)/n! * x^n/A(x)^n.
1
1, 2, 19, 634, 47649, 6274106, 1266115531, 361443760434, 138409787933185, 68440264233480946, 42456829504270563171, 32298905491751788363178, 29579335193166396705350113, 32110930501835244252851667114, 40785711234701383731234426737563, 59935074121681733668842271720802146, 100911303134764806288521563626921325569
OFFSET
0,2
COMMENTS
Compare e.g.f. to: exp(x) = Sum_{n>=0} (n+1)^(n-1)/n! * x^n/exp(x)^n.
FORMULA
E.g.f. A(x) satisfies: [x^n] A(x)^(n+1) = (n+1)^(2*n)/n! for n>=0.
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 19*x^2/2! + 634*x^3/3! + 47649*x^4/4! + 6274106*x^5/5! + 1266115531*x^6/6! + 361443760434*x^7/7! + 138409787933185*x^8/8! + 68440264233480946*x^9/9! + 42456829504270563171*x^10/10! +...
such that
A(x) = 1 + 2*x/A(x) + 3^3*(x/A(x))^2/2! + 4^5*(x/A(x))^3/3! + 5^7*(x/A(x))^4/4! + 6^9*(x/A(x))^5/5! + 7^11*(x/A(x))^6/6! +...+ (n+1)^(2*n-1) * (x/A(x))^n/n! +...
The table of coefficients of x^k/k! in A(x)^(n+1) begins:
[1, 2, 19, 634, 47649, 6274106, 1266115531, 361443760434, ...];
[1, 4, 46, 1496, 107608, 13742112, 2718008656, 765460154944, ...];
[1, 6, 81, 2634, 182613, 22621158, 4382123445, 1216833883674, ...];
[1, 8, 124, 4096, 275784, 33164864, 6288898048, 1720947264768, ...];
[1, 10, 175, 5930, 390625, 45667170, 8473311895, 2283859227970, ...];
[1, 12, 234, 8184, 531024, 60466176, 10975478976, 2912393501184, ...];
[1, 14, 301, 10906, 701253, 77947982, 13841287201, 3614236635114, ...];
[1, 16, 376, 14144, 905968, 98550528, 17123083840, 4398046511104, ...];
[1, 18, 459, 17946, 1150209, 122767434, 20880407043, 5273571977298], ...]; ...
in which the main diagonal begins:
[1, 4, 81, 4096, 390625, 60466176, 13841287201, ..., (n+1)^(2*n), ...].
RELATED SERIES.
log(A(x)) = 2*x + 15*x^2/2! + 536*x^3/3! + 42310*x^4/4! + 5741184*x^5/5! + 1181144664*x^6/6! + 341617297664*x^7/7! + 132031460161584*x^8/8! + 65730875486238720*x^9/9! + 40986501016038645760*x^10/10! + ...
PROG
(PARI) {a(n) = my(A=[1]); for(m=1, n, A = concat(A, 0); V = Vec( Ser(A)^(m+1) ); A[m+1] = ((m+1)^(2*m)/m! - V[m+1])/(m+1); ); G=Ser(A); n!*A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A296234.
Sequence in context: A247241 A376127 A270918 * A290302 A278840 A300995
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 06 2018
STATUS
approved