The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A296234 E.g.f. satisfies: A(x) = Sum_{n>=0} (n+1)^(2*n-2)/n! * x^n/A(x)^n. 2
 1, 1, 7, 187, 11517, 1269821, 218962723, 54377141463, 18394396344313, 8139652855993369, 4568235711128252991, 3172985215271887844819, 2673595890763195251451381, 2687987100922385348506502421, 3179641291050281648556689350747, 4372634003181176563537837740241711, 6918619855455296919138016216697597937, 12481750393031643279550408556774581268657 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare e.g.f. to: exp(x) = Sum_{n>=0} (n+1)^(n-1)/n! * x^n/exp(x)^n. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..200 FORMULA E.g.f. A(x) satisfies: (1) [x^n] A(x)^(n+1) = (n+1)^(2*n-1)/n! for n>=0. (2) A(x) = x/Series_Reversion( x * Sum_{n>=0} (n+1)^(2*n-2) * x^n/n! ). (3) A(x) = Sum_{n>=0} (n+1)^(2*n-2) * (x/A(x))^n / n!. EXAMPLE E.g.f.: A(x) = 1 + x + 7*x^2/2! + 187*x^3/3! + 11517*x^4/4! + 1269821*x^5/5! + 218962723*x^6/6! + 54377141463*x^7/7! + 18394396344313*x^8/8! + 8139652855993369*x^9/9! + 4568235711128252991*x^10/10! +... such that A(x) = 1 + x/A(x) + 3^2*(x/A(x))^2/2! + 4^4*(x/A(x))^3/3! + 5^6*(x/A(x))^4/4! + 6^8*(x/A(x))^5/5! + 7^10*(x/A(x))^6/6! +...+ (n+1)^(2*n-2) * (x/A(x))^n/n! +... The table of coefficients of x^k/k! in A(x)^(n+1) begins: [1, 1, 7, 187, 11517, 1269821, 218962723, 54377141463, ...]; [1, 2, 16, 416, 24824, 2680992, 456281248, 112343845952, ...]; [1, 3, 27, 693, 40173, 4249143, 713494215, 174131360553, ...]; [1, 4, 40, 1024, 57840, 5991584, 992282944, 239988068352, ...]; [1, 5, 55, 1415, 78125, 7927425, 1294484035, 310180891235, ...]; [1, 6, 72, 1872, 101352, 10077696, 1622102688, 384996798528, ...]; [1, 7, 91, 2401, 127869, 12465467, 1977326743, 464744426517, ...]; [1, 8, 112, 3008, 158048, 15115968, 2362541440, 549755813888, ...]; ... in which the main diagonal begins: [1, 2, 27, 1024, 78125, 10077696, 1977326743, ..., (n+1)^(2*n-1), ...]. RELATED SERIES. log(A(x)) = x + 6*x^2/2! + 168*x^3/3! + 10700*x^4/4! + 1203960*x^5/5! + 210264432*x^6/6! + 52655421952*x^7/7! + 17914652980128*x^8/8! + 7960047283278720*x^9/9! + 4481097300680675840*x^10/10! +... MATHEMATICA terms = 18; A[_] = 1; Do[A[x_] = Sum[(n + 1)^(2*n - 2)/n!*x^n/A[x]^n, {n, 0, terms}] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x]*Range[0, terms-1]! (* Jean-François Alcover, Jan 14 2018 *) PROG (PARI) {a(n) = my(A=[1]); for(m=1, n, A = concat(A, 0); V = Vec( Ser(A)^(m+1) ); A[m+1] = ((m+1)^(2*m-1)/m! - V[m+1])/(m+1); ); n!*A[n+1]} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A296235. Sequence in context: A012798 A297765 A193811 * A219567 A202791 A304859 Adjacent sequences: A296231 A296232 A296233 * A296235 A296236 A296237 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 06 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 02:25 EDT 2023. Contains 363044 sequences. (Running on oeis4.)