login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296231
G.f. A(x) satisfies: 1 = Sum_{n>=0} x^n / (1-x)^( n*(n+1) ) / A(x)^( (n+1)*(n+2)/2 ).
2
1, 1, 1, 2, 3, 7, 16, 48, 157, 586, 2362, 10214, 46672, 223752, 1118799, 5810185, 31237145, 173412537, 992006284, 5837461604, 35283954583, 218791917313, 1390314155401, 9044905749879, 60190822583318, 409404760891303, 2844213921090065, 20168470493811065, 145888129690256442, 1075859539461621404, 8084389249391405645, 61869341164985700882, 481984158600673224200
OFFSET
0,4
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 7*x^5 + 16*x^6 + 48*x^7 + 157*x^8 + 586*x^9 + 2362*x^10 + 10214*x^11 + 46672*x^12 + 223752*x^13+ 1118799*x^14 + 5810185*x^15 + ...
such that
1 = 1/A(x) + x/(1-x)^2/A(x)^3 + x^2/(1-x)^6/A(x)^6 + x^3/(1-x)^12/A(x)^10 + x^4/(1-x)^20/A(x)^15 + x^5/(1-x)^30/A(x)^21 + x^6/(1-x)^42/A(x)^28 + x^7/(1-x)^56/A(x)^36 + ...
PROG
(PARI) {a(n) = my(A=[1], V); for(i=0, n, A = concat(A, 0); V = Vec(sum(n=0, #A, 1/(1-x +x*O(x^#A))^(n*(n+1))*x^n/Ser(A)^((n+1)*(n+2)/2)) ); A[#A]=V[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A296230.
Sequence in context: A332885 A122031 A246829 * A089125 A289051 A282320
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 24 2018
STATUS
approved