login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296230
G.f. A(x) satisfies: 1 = Sum_{n>=0} x^n / (1-x)^( n*(n+1)/2 ) / A(x)^( (n+1)*(n+2)/2 ).
2
1, 1, 0, 1, 0, 1, 1, 0, 4, 0, 6, 13, 9, 48, 101, 147, 542, 1244, 2385, 8158, 19191, 44960, 145355, 356921, 953648, 2971797, 7728368, 22395844, 68642687, 189610373, 577526057, 1770461983, 5170947386, 16264118299, 50488278032, 154687144811, 498055705248, 1577949582705, 5029555661992, 16520308729413, 53633742931559, 176588771399224
OFFSET
0,9
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + x^3 + x^5 + x^6 + 4*x^8 + 6*x^10 + 13*x^11 + 9*x^12 + 48*x^13 + 101*x^14 + 147*x^15 + 542*x^16 + 1244*x^17 + 2385*x^18 + 8158*x^19 + 19191*x^20 + ...
such that
1 = 1/A(x) + x/(1-x)/A(x)^3 + x^2/(1-x)^3/A(x)^6 + x^3/(1-x)^6/A(x)^10 + x^4/(1-x)^10/A(x)^15 + x^5/(1-x)^15/A(x)^21 + x^6/(1-x)^21/A(x)^28 + x^7/(1-x)^28/A(x)^36 + ...
Compare to the trivial identity:
1 = 1/(1+x) + x*(1+x)/(1+x)^3 + x^2*(1+x)^3/(1+x)^6 + x^3*(1+x)^6/(1+x)^10 + x^4*(1+x)^10/(1+x)^15 + x^5*(1+x)^15/(1+x)^21 + ...
PROG
(PARI) {a(n) = my(A=[1], V); for(i=0, n, A = concat(A, 0); V = Vec(sum(n=0, #A, 1/(1-x +x*O(x^#A))^(n*(n+1)/2)*x^n/Ser(A)^((n+1)*(n+2)/2)) ); A[#A]=V[#A] ); A[n+1]}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A296231.
Sequence in context: A262246 A194193 A265644 * A222889 A223114 A222832
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 24 2018
STATUS
approved