login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194193
Square array read by antidiagonals downwards: T(n,k) = number of ways to arrange k indistinguishable points on an n X n square grid so that no three points are collinear at any angle.
7
1, 0, 4, 0, 6, 9, 0, 4, 36, 16, 0, 1, 76, 120, 25, 0, 0, 78, 516, 300, 36, 0, 0, 28, 1278, 2148, 630, 49, 0, 0, 2, 1668, 9498, 6768, 1176, 64, 0, 0, 0, 998, 25052, 47331, 17600, 2016, 81, 0, 0, 0, 204, 36698, 215448, 175952, 40120, 3240, 100, 0, 0, 0, 11, 26700, 620210
OFFSET
1,3
COMMENTS
Columns 4..7 are A175383, A194190, A194191, A194192 respectively. - Heinrich Ludwig, Nov 16 2016
LINKS
R. H. Hardin and Heinrich Ludwig, Table of n, a(n) for n = 1..199, (first 181 terms from R. H. Hardin)
EXAMPLE
Table starts:
...1.....0.......0........0..........0...........0............0............0
...4.....6.......4........1..........0...........0............0............0
...9....36......76.......78.........28...........2............0............0
..16...120.....516.....1278.......1668.........998..........204...........11
..25...300....2148.....9498......25052.......36698........26700.........8242
..36...630....6768....47331.....215448......620210......1073076......1035097
..49..1176...17600...175952....1189868.....5367308.....15657764.....28228158
..64..2016...40120...545764....5199888....34678364....159413700....491910848
..81..3240...82608..1461672...18520572...169259212...1108580092...5122725512
.100..4950..157252..3507553...56978440...682686652...6030207624..38914424892
.121..7260..280988..7701638..155627304..2356999994..26852315940.229093733030
.144.10296..477012.15773526..388897892..7294368210.104865006648
.169.14196..775172.30375194..894254904.20227526910
.196.19110.1214768.55695587.1932504496
.225.25200.1844512.97777392
.256.32640.2725000
...
Some solutions for n=4, k=4:
..0..0..1..0....0..0..0..0....0..0..0..0....0..0..1..0....1..0..0..0
..1..0..0..0....1..0..0..0....0..0..1..0....1..0..0..0....0..0..0..1
..0..0..0..0....0..1..0..1....1..0..1..0....1..0..0..0....0..0..0..1
..0..0..1..1....0..1..0..0....0..1..0..0....0..0..0..1....1..0..0..0
CROSSREFS
Column 1 is A000290.
Column 2 is A083374.
Column 3 is A045996.
Column 4 is A175383.
Column 5 is A194190.
Column 6 is A194191.
Column 7 is A194192.
Sequence in context: A361621 A354491 A262246 * A265644 A296230 A222889
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 18 2011
STATUS
approved