The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304859 O.g.f. A(x) satisfies: [x^n] exp( x*A(x) ) * ((n+1)^3 - A(x)) = 0 for n >= 0. 1
 1, 7, 188, 12055, 1506778, 325137986, 111398218424, 56980772011046, 41506384038800428, 41480331680194025916, 55182540633987204679584, 95316642195992777390509848, 209341095877177204596122425408, 574274492811735528719934388002880, 1937733557293593354972486212461808912, 7935430935079838085823331455696837604360, 38980412505942014324178479481443585982598736 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Note: the factorial series, F(x) = Sum_{n>=0} n! * x^n, satisfies: (1) [x^n] exp( x*F(x) ) * (n + 1 - F(x)) = 0 for n > 0, (2) [x^n] exp( n * x*F(x) ) * (2 - F(x)) = 0 for n > 0. It is remarkable that this sequence should consist entirely of integers. LINKS Table of n, a(n) for n=0..16. FORMULA E(n) = (1/((n+1)^3-1)) * Sum_{k=1..n} n!/(n-k)! * a(k) * E(n-k) for n > 0 with E(0) = 1, where exp(x*A(x)) = Sum_{n>=0} E(n) * x^n/n!. EXAMPLE O.g.f.: A(x) = 1 + 7*x + 188*x^2 + 12055*x^3 + 1506778*x^4 + 325137986*x^5 + 111398218424*x^6 + 56980772011046*x^7 + 41506384038800428*x^8 + ... ILLUSTRATION OF DEFINITION. The table of coefficients of x^k/k! in exp( x*A(x) ) * ((n+1)^3 - A(x)) begins: n=0: [0, -7, -390, -73773, -36518620, -39222931815, -80459970347322, ...]; n=1: [7, 0, -285, -65576, -34457085, -37945906128, -78813128848985, ...]; n=2: [26, 19, 0, -43327, -28861490, -34479693549, -74343130496356, ...]; n=3: [63, 56, 555, 0, -17964805, -27729700632, -65638396862289, ...]; n=4: [124, 117, 1470, 71431, 0, -16601333931, -51287349519638, ...]; n=5: [215, 208, 2835, 177992, 26799955, 0, -29878410041257, ...]; n=6: [342, 335, 4740, 326709, 64202090, 23168894607, 0, ...]; n=7: [511, 504, 7275, 524608, 113973435, 53999943336, 39759459031279, 0, ...]; ... in which the main diagonal is all zeros, illustrating the exponential property that [x^n] exp( x*A(x) ) * ((n+1)^3 - A(x)) = 0 for n >= 0. RELATED SERIES. exp(x*A(x)) = 1 + x + 15*x^2/2! + 1171*x^3/3! + 294505*x^4/4! + 182432241*x^5/5! + 235263071191*x^6/6! + 563154646240915*x^7/7! + 2302069522660831281*x^8/8! + ... + E(n)*x^n/n! + ... where E(n) = (1/((n+1)^3-1)) * Sum_{k=1..n} n!/(n-k)! * a(k) * E(n-k) for n > 0. PROG (PARI) {a(n) = my(A=[1], m); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp( x*(Ser(A)) ) * (m^3 - Ser(A)) )[m] ); A[n+1]} for(n=0, 20, print1(a(n), ", ")) /* Routine to generate E(n) where exp(x*A(x)) = Sum_{n>=0} E(n) * x^n/n! */ {E(n) = if(n==0, 1, (1/((n+1)^3-1)) * sum(k=1, n, n!/(n-k)! * a(k) * E(n-k) ))} for(n=0, 20, print1(E(n), ", ")) CROSSREFS Cf. A304858, A305110, A305112, A305113, A305114, A305115, A305116. Sequence in context: A296234 A219567 A202791 * A303292 A010332 A198258 Adjacent sequences: A304856 A304857 A304858 * A304860 A304861 A304862 KEYWORD nonn AUTHOR Paul D. Hanna, May 26 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 22:18 EDT 2023. Contains 363068 sequences. (Running on oeis4.)