login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303292 G.f. A(x) satisfies: 4 = Sum_{n>=0} (3/4)^n * (1 + x)^(n^2) / A(x)^n. 4
1, 7, 189, 17283, 2755053, 604260531, 165416203197, 53736069429315, 20098682471065149, 8484270818691168963, 3985069388942026022589, 2060504358592580623699011, 1162904612283296975554475517, 711422819982429170172765550083, 469007739834268780510389856367613, 331521891387779056571085490125831171, 250157485456407234540581483486760865533 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..200

FORMULA

G.f.: 4 = 1/(1 - q/(4/3*A(x) - q*(q^2-1)/(1 - q^5/(4/3*A(x) - q^3*(q^4-1)/(1 - q^9/(4/3*A(x) - q^5*(q^6-1)/(1 - q^13/(4/3*A(x) - q^7*(q^8-1)/(1 - ...))))))))), where q = (1+x), a continued fraction due to a partial elliptic theta function identity.

G.f.: 4 = Sum_{n>=0} (3/4)^n * (1+x)^n / A(x)^n * Product_{k=1..n} (4*A(x) - 3*(1+x)^(4*k-3)) / (4*A(x) - 3*(1+x)^(4*k-1)), due to a q-series identity.

a(n) ~ 3^(5/2) * 2^(2*n - 17/2) * n^n / (exp(n + log(4/3)^2 / 8) * log(4/3)^(2*n + 1)). - Vaclav Kotesovec, Oct 14 2020

EXAMPLE

G.f.: A(x) = 1 + 7*x + 189*x^2 + 17283*x^3 + 2755053*x^4 + 604260531*x^5 + 165416203197*x^6 + 53736069429315*x^7 + 20098682471065149*x^8 + ...

such that A = A(x) satisfies:

4 = 1 + (1+x)/(4*A/3) + (1+x)^4/(4*A/3)^2 + (1+x)^9/(4*A/3)^3 + (1+x)^16/(4*A/3)^4 + (1+x)^25/(4*A/3)^5 + (1+x)^36/(4*A/3)^6 + (1+x)^49/(4*A/3)^7 + ...

PROG

(PARI) /* Find A(x) that satisfies the continued fraction: */

{a(n) = my(A=[1], q=1+x, CF=1); for(i=1, n, A=concat(A, 0); m=#A; for(k=0, m, CF = 1/(1 - q^(4*m-4*k+1)/(4/3*Ser(A) - q^(2*m-2*k+1)*(q^(2*m-2*k+2) - 1)*CF)) ); A[#A] = Vec(CF)[#A]/12 ); A[n+1]}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A303290, A303291.

Sequence in context: A219567 A202791 A304859 * A010332 A198258 A200819

Adjacent sequences:  A303289 A303290 A303291 * A303293 A303294 A303295

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 22:42 EST 2021. Contains 349526 sequences. (Running on oeis4.)