The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303292 G.f. A(x) satisfies: 4 = Sum_{n>=0} (3/4)^n * (1 + x)^(n^2) / A(x)^n. 4
 1, 7, 189, 17283, 2755053, 604260531, 165416203197, 53736069429315, 20098682471065149, 8484270818691168963, 3985069388942026022589, 2060504358592580623699011, 1162904612283296975554475517, 711422819982429170172765550083, 469007739834268780510389856367613, 331521891387779056571085490125831171, 250157485456407234540581483486760865533 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Paul D. Hanna, Table of n, a(n) for n = 0..200 FORMULA G.f.: 4 = 1/(1 - q/(4/3*A(x) - q*(q^2-1)/(1 - q^5/(4/3*A(x) - q^3*(q^4-1)/(1 - q^9/(4/3*A(x) - q^5*(q^6-1)/(1 - q^13/(4/3*A(x) - q^7*(q^8-1)/(1 - ...))))))))), where q = (1+x), a continued fraction due to a partial elliptic theta function identity. G.f.: 4 = Sum_{n>=0} (3/4)^n * (1+x)^n / A(x)^n * Product_{k=1..n} (4*A(x) - 3*(1+x)^(4*k-3)) / (4*A(x) - 3*(1+x)^(4*k-1)), due to a q-series identity. a(n) ~ 3^(5/2) * 2^(2*n - 17/2) * n^n / (exp(n + log(4/3)^2 / 8) * log(4/3)^(2*n + 1)). - Vaclav Kotesovec, Oct 14 2020 EXAMPLE G.f.: A(x) = 1 + 7*x + 189*x^2 + 17283*x^3 + 2755053*x^4 + 604260531*x^5 + 165416203197*x^6 + 53736069429315*x^7 + 20098682471065149*x^8 + ... such that A = A(x) satisfies: 4 = 1 + (1+x)/(4*A/3) + (1+x)^4/(4*A/3)^2 + (1+x)^9/(4*A/3)^3 + (1+x)^16/(4*A/3)^4 + (1+x)^25/(4*A/3)^5 + (1+x)^36/(4*A/3)^6 + (1+x)^49/(4*A/3)^7 + ... PROG (PARI) /* Find A(x) that satisfies the continued fraction: */ {a(n) = my(A=[1], q=1+x, CF=1); for(i=1, n, A=concat(A, 0); m=#A; for(k=0, m, CF = 1/(1 - q^(4*m-4*k+1)/(4/3*Ser(A) - q^(2*m-2*k+1)*(q^(2*m-2*k+2) - 1)*CF)) ); A[#A] = Vec(CF)[#A]/12 ); A[n+1]} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A303290, A303291. Sequence in context: A219567 A202791 A304859 * A010332 A198258 A200819 Adjacent sequences:  A303289 A303290 A303291 * A303293 A303294 A303295 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 22:42 EST 2021. Contains 349526 sequences. (Running on oeis4.)