login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303289
E.g.f. A(x) satisfies: e = Sum_{n>=0} (1/n!) * (1+x)^(n^2) / A(x)^n.
1
1, 2, 5, 31, 390, 7926, 229448, 8769552, 421254088, 24578690456, 1699003652752, 136526757080176, 12565047627623648, 1308650039442105504, 152723805589647826368, 19806995417441865105472, 2834647872410303847945600, 444947841160313990957842304, 76198407065481146373641422336, 14170329519388795065500512696832
OFFSET
0,2
LINKS
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 5*x^2/2! + 31*x^3/3! + 390*x^4/4! + 7926*x^5/5! + 229448*x^6/6! + 8769552*x^7/7! + 421254088*x^8/8! + 24578690456*x^9/9! + 1699003652752*x^10/10! + ...
such that A = A(x) satisfies:
e = 1 + (1+x)/A + (1+x)^4/(2!*A^2) + (1+x)^9/(3!*A^3) + (1+x)^16/(4!*A^4) + (1+x)^25/(5!*A^5) + (1+x)^36/(6!*A^6) + (1+x)^49/(7!*A^7) + ...
PROG
(PARI) \p100; N=20;
A=[1]; for(i=1, N, A=concat(A, 0); A[#A] = Vec( round( sum(n=0, 200 + 2*#A, (1+x +x*O(x^#A))^(n^2)/Ser(A)^n/n!*1. )/exp(1)*(#A-1)! ) )[#A]/(#A-1)! ); Vec(serlaplace(Ser(A)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 23 2018
STATUS
approved