login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303289 E.g.f. A(x) satisfies: e = Sum_{n>=0} (1/n!) * (1+x)^(n^2) / A(x)^n. 1
1, 2, 5, 31, 390, 7926, 229448, 8769552, 421254088, 24578690456, 1699003652752, 136526757080176, 12565047627623648, 1308650039442105504, 152723805589647826368, 19806995417441865105472, 2834647872410303847945600, 444947841160313990957842304, 76198407065481146373641422336, 14170329519388795065500512696832 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..171

EXAMPLE

E.g.f.: A(x) = 1 + 2*x + 5*x^2/2! + 31*x^3/3! + 390*x^4/4! + 7926*x^5/5! + 229448*x^6/6! + 8769552*x^7/7! + 421254088*x^8/8! + 24578690456*x^9/9! + 1699003652752*x^10/10! + ...

such that A = A(x) satisfies:

e = 1 + (1+x)/A + (1+x)^4/(2!*A^2) + (1+x)^9/(3!*A^3) + (1+x)^16/(4!*A^4) + (1+x)^25/(5!*A^5) + (1+x)^36/(6!*A^6) + (1+x)^49/(7!*A^7) + ...

PROG

(PARI) \p100; N=20;

A=[1]; for(i=1, N, A=concat(A, 0); A[#A] = Vec( round( sum(n=0, 200 + 2*#A, (1+x +x*O(x^#A))^(n^2)/Ser(A)^n/n!*1. )/exp(1)*(#A-1)! ) )[#A]/(#A-1)! ); Vec(serlaplace(Ser(A)))

CROSSREFS

Cf. A303290, A303291, A303292.

Sequence in context: A056788 A091859 A085873 * A051048 A163852 A051399

Adjacent sequences:  A303286 A303287 A303288 * A303290 A303291 A303292

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 23 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 04:39 EDT 2019. Contains 327187 sequences. (Running on oeis4.)