OFFSET
0,2
COMMENTS
Number of meanders of length (n+1)*6 which are composed by arcs of equal length and a central angle of 60 degrees.
Definition of a meander:
A binary curve C is a triple (m, S, dir) such that
(a) S is a list with values in {L,R} which starts with an L,
(b) dir is a list of m different values, each value of S being allocated a value of dir,
(c) consecutive Ls increment the index of dir,
(d) consecutive Rs decrement the index of dir,
(e) the integer m>0 divides the length of S and
(f) C is a meander if each value of dir occurs length(S)/m times.
For this sequence, m = 6.
The terms are proved by brute force for 0 <= n <= 5, but not yet in general. - Susanne Wienand, Oct 29 2011
LINKS
Peter Luschny, Meanders and walks on the circle.
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..5} Sum_{i=0..5} (-1)^(j+i)*C(i,j)*C(n,k)^6*(n+1)^j*(k+1)^(5-j)/(k+1)^5. - Peter Luschny, Nov 02 2011
a(n) = Sum_{k=0..n} h(n,k)*binomial(n,k)^6, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^6)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 6. - Peter Luschny, Nov 24 2011
Conjecture: working with offset 1, that is, a(1) = 1, a(2) = 7, ..., then the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for positive integers n and r and all primes p >= 3. - Peter Bala, Mar 21 2023
a(n) ~ sqrt(3) * 2^(6*n+3) / (Pi*n)^(5/2). - Vaclav Kotesovec, Apr 17 2023
EXAMPLE
Some examples of list S and allocated values of dir if n = 4:
Length(S) = (4+1)*6 = 30.
S: L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L
dir: 1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,0
S: L,L,L,L,L,L,L,R,R,R,R,L,R,R,R,R,R,L,L,L,L,R,R,L,L,L,L,R,L,L
dir: 1,2,3,4,5,0,1,1,0,5,4,4,4,3,2,1,0,0,1,2,3,3,2,2,3,4,5,5,5,0
S: L,L,L,L,L,R,R,R,R,R,R,R,L,L,R,L,L,R,L,L,R,L,L,L,R,R,L,L,L,L
dir: 1,2,3,4,5,5,4,3,2,1,0,5,5,0,0,0,1,1,1,2,2,2,3,4,4,3,3,4,5,0
Each value of dir occurs 30/6 = 5 times.
MAPLE
A198258 := proc(n) local i, j, k, pow;
pow := (a, b) -> if a=0 and b=0 then 1 else a^b fi;
add(add(add((-1)^(j+i)*binomial(i, j)*binomial(n, k)^6*pow(n+1, j)*pow(k+1, 5-j)/(k+1)^5, i=0..5), j=0..5), k=0..n) end:
seq(A198258(n), n=0..16); # Peter Luschny, Nov 02 2011
MATHEMATICA
T[n_, k_] := (1 + n)(1 + 3 k + 3 k^2 - n - 3 k*n + n^2)(1 + k + k^2 + n - k*n + n^2) Binomial[n, k]^6/(1 + k)^5;
a[n_] := Sum[T[n, k], {k, 0, n}];
Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Jun 29 2019 *)
PROG
(PARI)
A198258(n) = {sum(k=0, n, if(n == 1+2*k, 6, (1+k)*(1-((n-k)/(1+k))^6)/(1+2*k-n))*binomial(n, k)^6)} \\ Peter Luschny, Nov 24 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Susanne Wienand, Oct 24 2011
STATUS
approved