login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092807
Expansion of (1-6*x+4*x^2)/((1-2*x)*(1-6*x)).
2
1, 2, 8, 40, 224, 1312, 7808, 46720, 280064, 1679872, 10078208, 60467200, 362799104, 2176786432, 13060702208, 78364180480, 470185017344, 2821109972992, 16926659575808, 101559956930560, 609359740534784
OFFSET
0,2
COMMENTS
Second binomial transform of A054881 (closed walks at a vertex of an octahedron) With interpolated zeros, counts closed walks of length n at a vertex of the edge-vertex incidence graph of K_4 associated with the edges of K_4.
This also gives the number of noncrossing, nonnesting, 2-colored permutations on {1, 2, ..., n}. - Lily Yen, Apr 22 2013
LINKS
Lily Yen, Crossings and Nestings for Arc-Coloured Permutations, arXiv:1211.3472 [math.CO], 2012-2013 and Arc-coloured permutations, PSAC 2013, Paris, France, June 24-28, Proc. DMTCS (2013) 743-754.
Lily Yen, Crossings and Nestings for Arc-Coloured Permutations and Automation, Electronic Journal of Combinatorics, 22(1) (2015), #P1.14.
FORMULA
G.f.: (1-6*x+4*x^2)/((1-2*x)*(1-6*x)).
a(n) = (6^n + 3*2^n + 2*0^n)/6.
a(n) = A074601(n-1), n>0. - R. J. Mathar, Sep 08 2008
a(0)=1, a(1)=2, a(2)=8, a(n) = 8*a(n-1)-12*a(n-2). - Harvey P. Dale, Aug 23 2011
a(n) = A124302(n)*2^n. - Philippe Deléham, Nov 01 2011
E.g.f.: (1/6)*( 1 + 3*exp(2*x) + exp(6*x) ). - G. C. Greubel, Jan 04 2023
MATHEMATICA
CoefficientList[Series[(1-6x+4x^2)/((1-2x)(1-6x)), {x, 0, 40}], x] (* or *) LinearRecurrence[{8, -12}, {1, 2, 8}, 41] (* Harvey P. Dale, Aug 23 2011 *)
PROG
(Magma) [1] cat [6^(n-1) + 2^(n-1): n in [1..40]]; // G. C. Greubel, Jan 04 2023
(SageMath) [(6^n + 3*2^n + 2*0^n)/6 for n in range(41)] # G. C. Greubel, Jan 04 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 06 2004
STATUS
approved