The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214763 G.f. satisfies: A(x) = 1/A(-x*A(x)^3). 10
 1, 2, 8, 40, 224, 1280, 7168, 40000, 231296, 1436928, 9773056, 72242176, 563679232, 4491707904, 35735001088, 280941652992, 2178641254400, 16710771339264, 127402021142528, 970887186407424, 7436390169329664, 57531833133899776, 451525691751628800, 3608174274928951296 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare to: G(x) = 1/G(-x*G(x)^3) when G(x) = 1 + x*G(x)^2 (A000108). Compare to: B(x) = 1/B(-x*B(x)^3) when B(x) = 1/(1-9*x)^(1/3) = g.f. of A004987. An infinite number of functions G(x) satisfy (*) G(x) = 1/G(-x*G(x)^3); for example, (*) is satisfied by G(x) = C(m*x) = (1-sqrt(1-4*m*x))/(2*m*x) for all m, where C(x) is the Catalan function. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..200 FORMULA The g.f. of this sequence is the limit of the recurrence: (*) G_{n+1}(x) = (G_n(x) + 1/G_n(-x*G_n(x)^3))/2 starting at G_0(x) = 1+2*x. EXAMPLE G.f.: A(x) = 1 + 2*x + 8*x^2 + 40*x^3 + 224*x^4 + 1280*x^5 + 7168*x^6 +... A(x)^2 = 1 + 4*x + 20*x^2 + 112*x^3 + 672*x^4 + 4096*x^5 + 24640*x^6 +... A(x)^3 = 1 + 6*x + 36*x^2 + 224*x^3 + 1440*x^4 + 9312*x^5 + 59456*x^6 +... 1/A(x) = A(-x*A(x)^3) = 1 - 2*x - 4*x^2 - 16*x^3 - 80*x^4 - 384*x^5 - 1664*x^6 - 7360*x^7 - 40832*x^8 - 304128*x^9 - 2667008*x^10 -... PROG (PARI) {a(n)=local(A=1+2*x); for(i=0, n, A=(A+1/subst(A, x, -x*A^3+x*O(x^n)))/2); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A214761, A214762, A214764, A214765, A214766, A214767, A214768, A214769. Sequence in context: A143388 A027282 A006195 * A219587 A092807 A074601 Adjacent sequences:  A214760 A214761 A214762 * A214764 A214765 A214766 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 27 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 09:47 EST 2020. Contains 338945 sequences. (Running on oeis4.)