The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214762 G.f. satisfies: A(x) = 1/A(-x*A(x)^2). 9
 1, 2, 6, 24, 110, 496, 2156, 9216, 38742, 160032, 664532, 2898848, 13923468, 75361600, 450629592, 2844358656, 18224898790, 116051632704, 728724233988, 4509502911328, 27569637798116, 167072272244352, 1006431412676456, 6037728817690112, 36101656922629500 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare to: W(x) = 1/W(-x*W(x)^2) when W(x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!. Compare to: B(x) = 1/B(-x*B(x)^2) when B(x) = Sum_{n>=0} (2*n)!*x^n/n!^2. An infinite number of functions G(x) satisfy (*) G(x) = 1/G(-x*G(x)^2); for example, (*) is satisfied by G(x) = W(m*x) = LambertW(-m*x)/(-m*x) for all m, where W(x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..290 FORMULA The g.f. of this sequence is the limit of the recurrence: (*) G_{n+1}(x) = (G_n(x) + 1/G_n(-x*G_n(x)^2))/2 starting at G_0(x) = 1+2*x. EXAMPLE G.f.: A(x) = 1 + 2*x + 6*x^2 + 24*x^3 + 110*x^4 + 496*x^5 + 2156*x^6 +... Related expansions: A(x)^2 = 1 + 4*x + 16*x^2 + 72*x^3 + 352*x^4 + 1720*x^5 + 8192*x^6 +... 1/A(x) = A(-x*A(x)^2) = 1 - 2*x - 2*x^2 - 8*x^3 - 34*x^4 - 112*x^5 - 324*x^6 - 896*x^7 - 1866*x^8 - 800*x^9 + 5540*x^10 +... PROG (PARI) {a(n)=local(A=1+2*x); for(i=0, n, A=(A+1/subst(A, x, -x*A^2+x*O(x^n)))/2); polcoeff(A, n)} for(n=0, 31, print1(a(n), ", ")) CROSSREFS Cf. A214761, A214763, A214764, A214765, A214766, A214767, A214768, A214769. Sequence in context: A324591 A230695 A177519 * A141254 A216879 A138020 Adjacent sequences:  A214759 A214760 A214761 * A214763 A214764 A214765 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 29 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 03:31 EST 2020. Contains 338943 sequences. (Running on oeis4.)