login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214759
E.g.f. satisfies: A(x) = x - log(1-A(x))*log(1+A(x)).
0
1, 2, 12, 130, 1980, 38828, 931308, 26409696, 864340080, 32064955512, 1329619343712, 60942831972240, 3059502805907184, 166958986644198240, 9840268295795334528, 622945100439880885920, 42156597800781887551296, 3036974549700781049394240, 232047627350715685524211392
OFFSET
1,2
FORMULA
E.g.f.: Series_Reversion(x + log(1-x)*log(1+x)).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) (-log(1-x))^n*log(1+x)^n / n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (-log(1-x))^n*log(1+x)^n/x / n! ).
a(n) ~ n^(n-1) * sqrt(r*(1-s^2) / (2+s + log(1-s)/(1+s) + log(1+s)/(1-s))) / (exp(n) * r^n), where s = 0.4236731503498759... is the root of the equation log(1+s)/(1-s) - log(1-s)/(1+s) = 1, and r = s + log(1-s)*log(1+s) = 0.2290093920590019... - Vaclav Kotesovec, Jan 13 2014
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 130*x^4/4! + 1980*x^5/5! +...
where A(x - log(1-x)*log(1+x)) = x and A(x) = x - log(1-A(x))*log(1+A(x)).
Related expansions:
-log(1-x)*log(1+x) = 2*x^2/2! + 10*x^4/4! + 188*x^6/6! + 7656*x^8/8! + 541152*x^10/10! + 58800960*x^12/12! +...
-log(1-A(x)) = x + 3*x^2/2! + 20*x^3/3! + 220*x^4/4! + 3374*x^5/5! + 66428*x^6/6! +...
log(1+A(x)) = x + x^2/2! + 8*x^3/3! + 88*x^4/4! + 1354*x^5/5! + 26708*x^6/6! +...
Other series:
A(x) = x - log(1-x)*log(1+x) + d/dx log(1-x)^2*log(1+x)^2/2! - d^2/dx^2 log(1-x)^3*log(1+x)^3/3! + d^3/dx^3 log(1-x)^4*log(1+x)^4/4! +...
log(A(x)/x) = -log(1-x)*log(1+x)/x + d/dx log(1-x)^2*log(1+x)^2/x/2! - d^2/dx^2 log(1-x)^3*log(1+x)^3/x/3! + d^3/dx^3 log(1-x)^4*log(1+x)^4/x/4! +...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x + Log[1-x]*Log[1+x], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 13 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff(serreverse(x+log(1-x+x*O(x^n))*log(1+x+x*O(x^n))), n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, (-log(1-x+x*O(x^n)))^m*log(1+x+x*O(x^n))^m/m!)); n!*polcoeff(A, n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, (-log(1-x+x*O(x^n)))^m*log(1+x+x*O(x^n))^m/x/m!))); n!*polcoeff(A, n)}
CROSSREFS
Cf. A143154.
Sequence in context: A354493 A079199 A303926 * A365601 A185751 A090361
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 31 2012
STATUS
approved