login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214761
G.f. satisfies: A(x) = 1/A(-x*A(x)).
8
1, 2, 4, 12, 40, 128, 416, 1344, 4224, 12928, 38016, 104832, 260096, 512256, 329728, -4140032, -33444864, -184423424, -883798016, -3935711232, -16759001088, -69266997248, -280327684096, -1116872122368, -4394989174784, -17112512544768, -65974620848128
OFFSET
0,2
COMMENTS
Compare g.f. to: G(x) = 1/G(-x*G(x)) when G(x) = 1/(1-x).
An infinite number of functions G(x) satisfy (*) G(x) = 1/G(-x*G(x)); for example, (*) is satisfied by G(x) = 1/(1-m*x).
FORMULA
The g.f. of this sequence is the limit of the recurrence:
(*) G_{n+1}(x) = (G_n(x) + 1/G_n(-x*G_n(x)))/2 starting at G_0(x) = 1+2*x.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 40*x^4 + 128*x^5 + 416*x^6 + 1344*x^7 +...
Related expansions:
1/A(x) = A(-x*A(x)) = 1 - 2*x - 4*x^3 - 8*x^4 - 16*x^5 - 48*x^6 - 96*x^7 - 128*x^8 + 64*x^9 + 2048*x^10 +...
PROG
(PARI) {a(n)=local(A=1+2*x); for(i=0, n, A=(A+1/subst(A, x, -x*A^1+x*O(x^n)))/2); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 29 2012
STATUS
approved