The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214766 G.f. satisfies: A(x) = 1/A(-x*A(x)^6). 8
 1, 2, 14, 112, 910, 8008, 84588, 1059296, 13998070, 179505848, 2193386772, 26007310560, 306461781228, 3616653947520, 42388643986040, 493154764709376, 5905712543971814, 78382075059128216, 1209853310234969668, 20945651586098921696, 378625571347575985092 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare to: W(x) = 1/W(-x*W(x)^6) when W(x) = Sum_{n>=0} (3*n+1)^(n-1)*x^n/n!. An infinite number of functions G(x) satisfy (*) G(x) = 1/G(-x*G(x)^6); for example, (*) is satisfied by G(x) = W(m*x), where W(x) = Sum_{n>=0} (3*n+1)^(n-1)*x^n/n!. LINKS FORMULA The g.f. of this sequence is the limit of the recurrence: (*) G_{n+1}(x) = (G_n(x) + 1/G_n(-x*G_n(x)^6))/2 starting at G_0(x) = 1+2*x. EXAMPLE G.f.: A(x) = 1 + 2*x + 14*x^2 + 112*x^3 + 910*x^4 + 8008*x^5 + 84588*x^6 +... A(x)^6 = 1 + 12*x + 144*x^2 + 1672*x^3 + 18720*x^4 + 207000*x^5 + 2339072*x^6 +... PROG (PARI) {a(n)=local(A=1+2*x); for(i=0, n, A=(A+1/subst(A, x, -x*A^6+x*O(x^n)))/2); polcoeff(A, n)} for(n=0, 31, print1(a(n), ", ")) CROSSREFS Cf. A214761, A214762, A214763, A214764, A214765, A214767, A214768, A214769. Sequence in context: A103945 A111713 A144278 * A330553 A275649 A199649 Adjacent sequences:  A214763 A214764 A214765 * A214767 A214768 A214769 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 29 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 03:31 EST 2020. Contains 338943 sequences. (Running on oeis4.)