login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214760
G.f. satisfies: A(x) = 1/A(-x*A(x)^3).
1
1, 2, 8, 40, 224, 1328, 8128, 51664, 344864, 2419808, 17690624, 133255936, 1025049088, 8010533504, 63486137600, 510583994560, 4173502486400, 34713858911872, 293845548560384, 2528481737709056, 22072195485742080, 194999285532239872, 1739475973516343296
OFFSET
0,2
COMMENTS
Compare g.f. to: G(x) = 1/G(-x*G(x)^3) when G(x) = 1 + x*G(x)^2 (A000108).
An infinite number of functions G(x) satisfy (*) G(x) = 1/G(-x*G(x)^3); for example, (*) is satisfied by G(x) = C(m*x) = (1-sqrt(1-4*m*x))/(2*m*x) for all m, where C(x) is the Catalan function.
LINKS
FORMULA
The g.f. of this sequence is the limit of the recurrence:
(*) G_{n+1}(x) = AGM(G_n(x), 1/G_n(-x*G_n(x)^3)) starting at G_0(x) = 1+2*x, where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean of x and y.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 8*x^2 + 40*x^3 + 224*x^4 + 1328*x^5 + 8128*x^6 +...
A(x)^2 = 1 + 4*x + 20*x^2 + 112*x^3 + 672*x^4 + 4192*x^5 + 26752*x^6 +...
A(x)^3 = 1 + 6*x + 36*x^2 + 224*x^3 + 1440*x^4 + 9456*x^5 + 62912*x^6 +...
To illustrate the recurrence for the g.f., start with G_0(x) = 1+2*x, then
1/G_0(-x*G_0(x)^3) = 1/(1-2*x-12*x^2-24*x^3-16*x^4), and so
G_1(x) = AGM(1+2*x, 1/(1-2*x-12*x^2-24*x^3-16*x^4)):
G_1(x) = 1 + 2*x + 8*x^2 + 40*x^3 + 192*x^4 + 976*x^5 + 4944*x^6 +...;
continuing in this way yields the g.f. as a limit.
PROG
(PARI) {a(n)=local(A=1+2*x); for(i=0, n, A=agm(A, 1/subst(A, x, -x*A^3+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A214763.
Sequence in context: A219587 A092807 A074601 * A052701 A151374 A177408
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 29 2012
STATUS
approved