OFFSET
1,2
FORMULA
Radius of convergence, r, and related values:
. r = 0.123195593008501117935531659506400229201428882504980293279833...
. A(r) = 0.239702251488238187695726754757078686233527461098463854580...
. A(-r) = -0.1022686661772839286606841162458831990656192887231153817...
. limit a(n)/a(n+1) = r.
Series reversion: let R(x) satisfy R(A(x)) = x, then
. R(x) = x - A(4x^4)^(1/2),
. x/R(x) = x*d/dx[x/R(x)] at x = A(r) where r = radius of convergence.
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 8*x^3 + 40*x^4 + 224*x^5 + 1352*x^6 +...
Related expansions:
. A(4A(x)^4) = 4*x^4 + 32*x^5 + 224*x^6 + 1536*x^7 + 10592*x^8 +...
. A(x)^4 = x^4 + 8*x^5 + 56*x^6 + 384*x^7 + 2640*x^8 + 18336*x^9 +...
. A(4x^4)^(1/2) = 2*x^2 + 8*x^6 + 112*x^10 + 2112*x^14 + 45760*x^18 +...
...
The series reversion is defined by R(x) = x - A(4x^4)^(1/2) where:
. R(x) = x - 2*x^2 - 8*x^6 - 112*x^10 - 2112*x^14 - 45760*x^18 -...
. x/R(x) = 1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4 + 40*x^5 + 96*x^6 + 224*x^7 +...
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x+subst(A, x, 4*(A+x*O(x^n))^4)^(1/2)); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 19 2010
STATUS
approved