login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177408
G.f. satisfies: A(x) = x + A( 4*A(x)^4 )^(1/2).
1
1, 2, 8, 40, 224, 1352, 8576, 56352, 380160, 2617584, 18320384, 129950912, 932114432, 6749344832, 49268899840, 362189529344, 2678989406208, 19923485019840, 148887398711296, 1117452514604800, 8419605676818432
OFFSET
1,2
FORMULA
Radius of convergence, r, and related values:
. r = 0.123195593008501117935531659506400229201428882504980293279833...
. A(r) = 0.239702251488238187695726754757078686233527461098463854580...
. A(-r) = -0.1022686661772839286606841162458831990656192887231153817...
. limit a(n)/a(n+1) = r.
Series reversion: let R(x) satisfy R(A(x)) = x, then
. R(x) = x - A(4x^4)^(1/2),
. x/R(x) = x*d/dx[x/R(x)] at x = A(r) where r = radius of convergence.
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 8*x^3 + 40*x^4 + 224*x^5 + 1352*x^6 +...
Related expansions:
. A(4A(x)^4) = 4*x^4 + 32*x^5 + 224*x^6 + 1536*x^7 + 10592*x^8 +...
. A(x)^4 = x^4 + 8*x^5 + 56*x^6 + 384*x^7 + 2640*x^8 + 18336*x^9 +...
. A(4x^4)^(1/2) = 2*x^2 + 8*x^6 + 112*x^10 + 2112*x^14 + 45760*x^18 +...
...
The series reversion is defined by R(x) = x - A(4x^4)^(1/2) where:
. R(x) = x - 2*x^2 - 8*x^6 - 112*x^10 - 2112*x^14 - 45760*x^18 -...
. x/R(x) = 1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4 + 40*x^5 + 96*x^6 + 224*x^7 +...
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x+subst(A, x, 4*(A+x*O(x^n))^4)^(1/2)); polcoeff(A, n)}
CROSSREFS
Cf. A141200.
Sequence in context: A214760 A052701 A151374 * A289431 A337912 A085485
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 19 2010
STATUS
approved