login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177409 G.f. satisfies: x = A(x) - A(x)^2 - A(A(x))^2. 1
1, 2, 12, 108, 1208, 15536, 220832, 3390480, 55411872, 954553664, 17211258240, 323148560768, 6293245904640, 126740607526400, 2633207863038976, 56330595706808576, 1238815010325576192, 27970477203200824320 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..18.

FORMULA

G.f. satisfies: A_{n}(x) = A_{n+1}(x) - A_{n+1}(x)^2 - A_{n+2}(x)^2 where A_{n+1}(x) = A_{n}(A(x)) denotes iteration with A_0(x)=x.

G.f. satisfies: A(x) = A(A(x)) - A(A(x))^2 - A(A(A(x)))^2.

G.f. satisfies: x = A( x-x^2 - A(x)^2 ).

...

Given g.f. A(x), A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations starting with:

. A = 1 + xA^2 + xB^2;

. B = A + xB^2 + xC^2;

. C = B + xC^2 + xD^2;

. D = C + xD^2 + xE^2; ...

. also B = A(A(x))/x, C = A(A(A(x)))/x, D = A(A(A(A(x))))/x, etc.

EXAMPLE

G.f.: A(x) = x + 2*x^2 + 12*x^3 + 108*x^4 + 1208*x^5 + 15536*x^6 +...

Related expansions:

A(x)^2 = x^2 + 4*x^3 + 28*x^4 + 264*x^5 + 2992*x^6 + 38496*x^7 +...

A(A(x)) = x + 4*x^2 + 32*x^3 + 344*x^4 + 4384*x^5 + 62624*x^6 +...

A(A(x))^2 = x^2 + 8*x^3 + 80*x^4 + 944*x^5 + 12544*x^6 + 182336*x^7 +...

A_{-1}(x) = x - 2*x^2 - 4*x^3 - 28*x^4 - 264*x^5 - 2992*x^6 -...

...

Illustrate A_{n}(x) = A_{n+1}(x) - A_{n+1}(x)^2 - A_{n+2}(x)^2 by the following tables of coefficients in the iterations of g.f. A(x).

COefficients in iterations A_{n}(x), n=1..8, begin:

A_1: [1, 2, 12, 108, 1208, 15536, 220832, 3390480,...];

A_2: [1, 4, 32, 344, 4384, 62624, 973056, 16152608,...];

A_3: [1, 6, 60, 756, 10936, 173968, 2972320, 53760496,...];

A_4: [1, 8, 96, 1392, 22656, 399808, 7503616, 147999296,...];

A_5: [1, 10, 140, 2300, 41720, 811760, 16670112, 357673168,...];

A_6: [1, 12, 192, 3528, 70688, 1506656, 33688064, 783303776,...];

A_7: [1, 14, 252, 5124, 112504, 2610384, 63227808, 1586464432,...];

A_8: [1, 16, 320, 7136, 170496, 4281728, 111800832, 3014395008,...].

...

COefficients in squared iterations A_{n}(x)^2, for n=1..8, begin:

(A_1)^2: [0, 1, 4, 28, 264, 2992, 38496, 544464, 8298080,...];

(A_2)^2: [0, 1, 8, 80, 944, 12544, 182336, 2846016, 47113792,...];

(A_3)^2: [0, 1, 12, 156, 2232, 34544, 569888, 9916112, ...];

(A_4)^2: [0, 1, 16, 256, 4320, 76800, 1429376, 27691776, ...];

(A_5)^2: [0, 1, 20, 380, 7400, 149040, 3101920, 66547024, ...];

(A_6)^2: [0, 1, 24, 528, 11664, 262912, 6064576, 143126848, ...];

(A_7)^2: [0, 1, 28, 700, 17304, 431984, 10953376, 282503760, ...];

(A_8)^2: [0, 1, 32, 896, 24512, 671744, 18586368, 520656896, ...].

PROG

(PARI) {a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x-x^2-(A+x*O(x^n))^2)); polcoeff(A, n))}

CROSSREFS

Cf. A292810, A177397.

Sequence in context: A080446 A301411 A217803 * A212273 A055897 A210997

Adjacent sequences:  A177406 A177407 A177408 * A177410 A177411 A177412

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 01 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 19:53 EDT 2019. Contains 325199 sequences. (Running on oeis4.)