login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177406
G.f. satisfies: A(x) = x + A( 27*A(x)^6 )^(1/3).
0
1, 3, 18, 135, 1134, 10206, 96228, 938304, 9384660, 95746860, 992583072, 10425704562, 110714749236, 1186711306875, 12821975547696, 139501306797120, 1527013735182810, 16805125811826495, 185831030179447380
OFFSET
1,2
FORMULA
Radius of convergence, r, and related values:
. r = 0.0832854117848379079627858177662093190328717029025025344504328...
. A(r) = 0.166285097718710273401082966562979331796241671228716865630919...
. limit a(n)/a(n+1) = r.
Series reversion: let R(x) satisfy R(A(x)) = x, then
. R(x) = x - A(27x^6)^(1/3),
. x/R(x) = x*d/dx[x/R(x)] at x = A(r) where r = radius of convergence.
EXAMPLE
G.f. A(x) = x + 3*x^2 + 18*x^3 + 135*x^4 + 1134*x^5 + 10206*x^6 +...
Related expansions:
. A(27*A(x)^6) = 27*x^6 + 486*x^7 + 6561*x^8 + 80190*x^9 +...
. A(x)^6 = x^6 + 18*x^7 + 243*x^8 + 2970*x^9 + 34749*x^10 +...
. A(27*x^6)^(1/3) = 3*x^2 + 18*x^3 + 135*x^4 + 1134*x^5 + 10206*x^6 +...
...
The series reversion is defined by R(x) = x - A(27x^6)^(1/3) where:
. R(x) = x - 3*x^2 - 81*x^8 - 10935*x^14 - 2047032*x^20 -...
. x/R(x) = 1 + 3*x + 9*x^2 + 27*x^3 + 81*x^4 + 243*x^5 + 729*x^6 + 2268*x^7 +...
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x+subst(A, x, 27*(A+x*O(x^n))^6)^(1/3)); polcoeff(A, n)}
CROSSREFS
Cf. A177408.
Sequence in context: A114178 A005159 A151383 * A289430 A247452 A371416
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 20 2010
STATUS
approved